Transcription Factor

Accessions: ECK120004828 (RegulonDB 7.5)
Names: Fur
Organisms: ECK12
Libraries: RegulonDB 7.5 1
1 Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado L, Garcia-Sotelo JS, Weiss V, Solano-Lira H, Martinez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernandez S, Alquicira-Hernandez K, Lopez-Fuentes A, Porron-Sotelo L, Huerta AM, Bonavides-Martinez C, Balderas-Martinez YI, Pannier L, Olvera M, Labastida A, Jimenez-Jacinto V, Vega-Alvarado L, Del Moral-Chavez V, Hernandez-Alvarez A, Morett E, Collado-Vides J. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 2013 Jan 1;41(D1):D203-D213. [Pubmed]
Notes: repressor; regulon; activator; Transcription related; cytoplasm; zinc ion binding; sequence-specific DNA binding transcription factor activity; DNA binding; transcription activator activity; transcription, DNA-dependent; negative regulation of transcription, DNA-dependent; transcription repressor activity; regulation of transcription, DNA-dependent
Length: 149
Pfam Domains: 10-130 Ferric uptake regulator family
Sequence:
(in bold interface residues)
1 MTDNNTALKKAGLKVTLPRLKILEVLQEPDNHHVSAEDLYKRLIDMGEEIGLATVYRVLN 60
61 QFDDAGIVTRHNFEGGKSVFELTQQHHHDHLICLDCGKVIEFSDDSIEARQREIAAKHGI 120
121 RLTNHSLYLYGHCAEGDCREDEHAHEGK*
Interface Residues: 14, 37, 51, 52, 53, 54, 56, 57, 78, 98, 99
3D-footprint Homologues: 4rb3_D, 7vo0_N, 7vpz_N, 7x74_H, 4mtd_D, 4aik_A, 3thx_B
Binding Motifs: Fur AATGAkAAtgATTwtyAw
Binding Sites: ECK120011181
ECK120011184
ECK120011521
ECK120011523
ECK120011525
ECK120011527
ECK120011529
ECK120011535
ECK120011539
ECK120011696
ECK120011699
ECK120011701
ECK120011737
ECK120012032
ECK120012385
ECK120012392
ECK120012394
ECK120012396
ECK120012398
ECK120012400
ECK120012656
ECK120012659
ECK120012886
ECK120012888
ECK120013121
ECK120013124
ECK120013127
ECK120013496
ECK120013537
ECK120015641
ECK120015643
ECK120015645
ECK120015647
ECK120016006
ECK120016008
ECK120016010
ECK120016012
ECK120016014
ECK120016018
ECK120016032
ECK120016036
ECK120016058
ECK120016143
ECK120016484
ECK120016496
ECK120017054
ECK120023166
ECK120030708
ECK120030710
ECK120030712
ECK120030715
ECK120030740
ECK120033085
ECK120033347
ECK120033348
ECK120033921
ECK120033925
ECK120033927
ECK120033930
ECK120033932
ECK120033934
ECK120033936
ECK120033938
ECK120033940
ECK120033943
ECK120033945
ECK120033947
ECK125108650
ECK125108654
ECK125108656
ECK125108658
ECK125110197
ECK125110199
ECK125110201
ECK125110203
ECK125110205
ECK125110207
ECK125110243
ECK125110245
ECK125110260
ECK125134861
ECK125134863
ECK125134865
ECK125140761
Publications: Zhang Z., Gosset G., Barabote R., Gonzalez CS., Cuevas WA., Saier MH. Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol. 187(3):980-90 (2005). [Pubmed]

Jabour S., Hamed MY. Binding of the Zn(2+) ion to ferric uptake regulation protein from E. coli and the competition with Fe(2+) binding: a molecular modeling study of the effect on DNA binding and conformational changes of Fur. J Comput Aided Mol Des. 23(4):199-208 (2009). [Pubmed]

Pecqueur L., D'Autreaux B., Dupuy J., Nicolet Y., Jacquamet L., Brutscher B., Michaud-Soret I., Bersch B. Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J Biol Chem. 281(30):21286-95 (2006). [Pubmed]

Spiro S. Nitric oxide-sensing mechanisms in Escherichia coli. Biochem Soc Trans. 34(Pt 1):200-2 (2006). [Pubmed]

Saito T., Williams RJ. The binding of the ferric uptake regulation protein to a DNA fragment. Eur J Biochem. 197(1):43-7 (1991). [Pubmed]

Baichoo N., Helmann JD. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol. 184(21):5826-32 (2002). [Pubmed]

Lavrrar JL., McIntosh MA. Architecture of a fur binding site: a comparative analysis. J Bacteriol. 185(7):2194-202 (2003). [Pubmed]

Hamed MY., Al-Jabour S. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling. J Mol Graph Model. 25(2):234-46 (2006). [Pubmed]

Coulton JW., Mason P., Cameron DR., Carmel G., Jean R., Rode HN. Protein fusions of beta-galactosidase to the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol. 165(1):181-92 (1986). [Pubmed]

Chen Z., Lewis KA., Shultzaberger RK., Lyakhov IG., Zheng M., Doan B., Storz G., Schneider TD. Discovery of Fur binding site clusters in Escherichia coli by information theory models. Nucleic Acids Res. 35(20):6762-77 (2007). [Pubmed]

Newman DL., Shapiro JA. Differential fiu-lacZ fusion regulation linked to Escherichia coli colony development. Mol Microbiol. 33(1):18-32 (1999). [Pubmed]

De Lorenzo V., Herrero M., Giovannini F., Neilands JB. Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur J Biochem. 173(3):537-46 (1988). [Pubmed]

Hantke K. Iron and metal regulation in bacteria. Curr Opin Microbiol. 4(2):172-7 (2001). [Pubmed]

Vassinova N., Kozyrev D. A method for direct cloning of fur-regulated genes: identification of seven new fur-regulated loci in Escherichia coli. Microbiology. 146 Pt 12:3171-82 (2000). [Pubmed]

D'Autreaux B., Touati D., Bersch B., Latour JM., Michaud-Soret I. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc Natl Acad Sci U S A. 99(26):16619-24 (2002). [Pubmed]

Angerer A., Braun V. Iron regulates transcription of the Escherichia coli ferric citrate transport genes directly and through the transcription initiation proteins. Arch Microbiol. 169(6):483-90 (1998). [Pubmed]

Kammler M., Schon C., Hantke K. Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol. 175(19):6212-9 (1993). [Pubmed]

Griggs DW., Konisky J. Mechanism for iron-regulated transcription of the Escherichia coli cir gene: metal-dependent binding of fur protein to the promoters. J Bacteriol. 171(2):1048-52 (1989). [Pubmed]

Outten FW., Djaman O., Storz G. A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol. 52(3):861-72 (2004). [Pubmed]

Sauer M., Hantke K., Braun V. Sequence of the fhuE outer-membrane receptor gene of Escherichia coli K12 and properties of mutants. Mol Microbiol. 4(3):427-37 (1990). [Pubmed]

de Lorenzo V., Wee S., Herrero M., Neilands JB. Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol. 169(6):2624-30 (1987). [Pubmed]

Arechaga I., Miroux B., Runswick MJ., Walker JE. Over-expression of Escherichia coli F1F(o)-ATPase subunit a is inhibited by instability of the uncB gene transcript. FEBS Lett. 547(1-3):97-100 (2003). [Pubmed]

Stojiljkovic I., Baumler AJ., Hantke K. Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. J Mol Biol. 236(2):531-45 (1994). [Pubmed]

Tardat B., Touati D. Iron and oxygen regulation of Escherichia coli MnSOD expression: competition between the global regulators Fur and ArcA for binding to DNA. Mol Microbiol. 9(1):53-63 (1993). [Pubmed]

Patzer SI., Hantke K. Dual repression by Fe(2+)-Fur and Mn(2+)-MntR of the mntH gene, encoding an NRAMP-like Mn(2+) transporter in Escherichia coli. J Bacteriol. 183(16):4806-13 (2001). [Pubmed]

Koch D., Nies DH., Grass G. The RcnRA (YohLM) system of Escherichia coli: A connection between nickel, cobalt and iron homeostasis. Biometals. 20(5):759-71 (2007). [Pubmed]

Graham AI., Sanguinetti G., Bramall N., McLeod CW., Poole RK. Dynamics of a starvation-to-surfeit shift: a transcriptomic and modelling analysis of the bacterial response to zinc reveals transient behaviour of the Fur and SoxS regulators. Microbiology. 158(Pt 1):284-92 (2012). [Pubmed]

Puskarova A., Ferianc P., Kormanec J., Homerova D., Farewell A., Nystrom T. Regulation of yodA encoding a novel cadmium-induced protein in Escherichia coli. Microbiology. 148(Pt 12):3801-11 (2002). [Pubmed]

Sumi T., Sekino H. A crossover from metal to plasma in dense fluid hydrogen. J Chem Phys. 125(19):194526 (2006). [Pubmed]

Tseng CP. Regulation of fumarase (fumB) gene expression in Escherichia coli in response to oxygen, iron and heme availability: role of the arcA, fur, and hemA gene products. FEMS Microbiol Lett. 157(1):67-72 (1997). [Pubmed]

Brickman TJ., Ozenberger BA., McIntosh MA. Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli. J Mol Biol. 212(4):669-82 (1990). [Pubmed]

Lee JW., Helmann JD. Functional specialization within the Fur family of metalloregulators. Biometals. 20(3-4):485-99 (2007). [Pubmed]

Masse E., Escorcia FE., Gottesman S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17(19):2374-83 (2003). [Pubmed]

Semsey S., Andersson AM., Krishna S., Jensen MH., Masse E., Sneppen K. Genetic regulation of fluxes: iron homeostasis of Escherichia coli. Nucleic Acids Res. 34(17):4960-7 (2006). [Pubmed]

Masse E., Vanderpool CK., Gottesman S. Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol. 187(20):6962-71 (2005). [Pubmed]

Masse E., Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A. 99(7):4620-5 (2002). [Pubmed]

Vecerek B., Moll I., Afonyushkin T., Kaberdin V., Blasi U. Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron metabolism of Escherichia coli. Mol Microbiol. 50(3):897-909 (2003). [Pubmed]

Mills SA., Marletta MA. Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry. 44(41):13553-9 (2005). [Pubmed]

Althaus EW., Outten CE., Olson KE., Cao H., O'Halloran TV. The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry. 38(20):6559-69 (1999). [Pubmed]

Clarke TE., Tari LW., Vogel HJ. Structural biology of bacterial iron uptake systems. Curr Top Med Chem. 1(1):7-30 (2001). [Pubmed]
Related annotations: PaperBLAST

Disclaimer and license

These data are available AS IS and at your own risk. The EEAD/CSIC do not give any representation or warranty nor assume any liability or responsibility for the data nor the results posted (whether as to their accuracy, completeness, quality or otherwise). Access to these data is available free of charge for ordinary use in the course of research. Downloaded data have CC-BY-NC-SA license. FootprintDB is also available at RSAT::Plants, part of the INB/ELIXIR-ES resources portfolio.