Transcription Factor

Accessions: ECK120004693 (RegulonDB 7.5)
Names: DeoR, DeoR DNA-binding transcriptional repressor
Organisms: ECK12
Libraries: RegulonDB 7.5 1
1 Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado L, Garcia-Sotelo JS, Weiss V, Solano-Lira H, Martinez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernandez S, Alquicira-Hernandez K, Lopez-Fuentes A, Porron-Sotelo L, Huerta AM, Bonavides-Martinez C, Balderas-Martinez YI, Pannier L, Olvera M, Labastida A, Jimenez-Jacinto V, Vega-Alvarado L, Del Moral-Chavez V, Hernandez-Alvarez A, Morett E, Collado-Vides J. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 2013 Jan 1;41(D1):D203-D213. [Pubmed]
Notes: The transcriptional repressor DeoR, for Deoxyribose Regulator, is involved in the negative expression of genes related to transport and catabolism of deoxyribonucleoside nucleotides Hammer-Jespersen K,1975; Short SA,1984; Barbier CS,1985; Valentin-Hansen P,1986; Bremer E,1988; Bremer E,1990; Amouyal M,1989; Dandanell G,1991; Munch-Petersen A,1990 DeoR belongs to the DeoR family of transcriptional regulators Valentin-Hansen P,1985; Zeng G,1996 This protein consists of two domains, an amino-terminal domain that contains a potential helix-turn-helix DNA-binding motif and a carboxy-terminal domain involved in the oligomerization and the recognition of a possible co-inducer Valentin-Hansen P,1985; Zeng G,1996; Garces F,2008 DeoR is an octamer in solution Mortensen L,1989and it forms multiple complexes (oligomers) in its target promoters; the cooperative binding of this regulator to different tandem inverted repeat sequences generates a repression DNA loop Mochul'skaia NA,1994; Dandanell G,1985; Valentin- Hansen P,1982; Mortensen L,1989; Dandanell G.,1992 The binding targets for DeoR consist of 16-nucleotide inverted repeat sequences that possess conserved motifs Hammer K,1993; Dandanell G.,1992; operon; repressor; transcription, DNA-dependent; DNA binding; Transcription related; intracellular; regulation of transcription, DNA-dependent; cytoplasm; nucleotide and nucleoside conversions; sequence-specific DNA binding transcription factor activity
Length: 253
Pfam Domains: 8-59 DeoR-like helix-turn-helix domain
76-232 DeoR C terminal sensor domain
Sequence:
(in bold interface residues)
1 METRREERIGQLLQELKRSDKLHLKDAAALLGVSEMTIRRDLNNHSAPVVLLGGYIVLEP 60
61 RSASHYLLSDQKSRLVEEKRRAAKLAATLVEPDQTLFFDCGTTTPWIIEAIDNEIPFTAV 120
121 CYSLNTFLALKEKPHCRAFLCGGEFHASNAIFKPIDFQQTLNNFCPDIAFYSAAGVHVSK 180
181 GATCFNLEELPVKHWAMSMAQKHVLVVDHSKFGKVRPARMGDLKRFDIVVSDCCPEDEYV 240
241 KYAQTQRIKLMY*
Interface Residues: 34, 35, 36, 37, 39, 40, 43
3D-footprint Homologues: 1zx4_A, 3wgi_D
Binding Motifs: DeoR TkCThACAkmw
Binding Sites: ECK120012666
ECK120012668
ECK120012670
ECK120012677
ECK120012679
ECK120012681
ECK120013435
Publications: Short SA., Singer JT. Studies on deo operon regulation in Escherichia coli: cloning and expression of the deoR structural gene. Gene. 31(1-3):205-11 (1984). [Pubmed]

Bremer E., Gerlach P., Middendorf A. Double negative and positive control of tsx expression in Escherichia coli. J Bacteriol. 170(1):108-16 (1988). [Pubmed]

Bremer E., Middendorf A., Martinussen J., Valentin-Hansen P. Analysis of the tsx gene, which encodes a nucleoside-specific channel-forming protein (Tsx) in the outer membrane of Escherichia coli. Gene. 96(1):59-65 (1990). [Pubmed]

Amouyal M., Mortensen L., Buc H., Hammer K. Single and double loop formation when deoR repressor binds to its natural operator sites. Cell. 58(3):545-51 (1989). [Pubmed]

Dandanell G., Hammer K. deoP1 promoter and operator mutants in Escherichia coli: isolation and characterization. Mol Microbiol. 5(10):2371-6 (1991). [Pubmed]

Munch-Petersen A., Jensen N. Analysis of the regulatory region of the Escherichia coli nupG gene, encoding a nucleoside-transport protein. Eur J Biochem. 190(3):547-51 (1990). [Pubmed]

Valentin-Hansen P., Hojrup P., Short S. The primary structure of the DeoR repressor from Escherichia coli K-12. Nucleic Acids Res. 13(16):5927-36 (1985). [Pubmed]

Zeng G., Ye S., Larson TJ. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain. J Bacteriol. 178(24):7080-9 (1996). [Pubmed]

Garces F., Fernandez FJ., Gomez AM., Perez-Luque R., Campos E., Prohens R., Aguilar J., Baldoma L., Coll M., Badia J., Vega MC. Quaternary structural transitions in the DeoR-type repressor UlaR control transcriptional readout from the L-ascorbate utilization regulon in Escherichia coli. Biochemistry. 47(44):11424-33 (2008). [Pubmed]

Mortensen L., Dandanell G., Hammer K. Purification and characterization of the deoR repressor of Escherichia coli. EMBO J. 8(1):325-31 (1989). [Pubmed]

Mochul'skaia NA., Mironov AS., Mashko SV. [Decrease in the level of DeoR-dependent repression of the deo operon as a result of integration of foreign DNA fragments into the interoperator deoO1-deoO2 region of the Escherichia coli chromosome] Genetika. 30(9):1175-83 (1994). [Pubmed]

Dandanell G., Norris K., Hammer K. Long-distance deoR regulation of gene expression in Escherichia coli. Ann N Y Acad Sci. 646:19-30 (1991). [Pubmed]

Dandanell G., Hammer K. Two operator sites separated by 599 base pairs are required for deoR repression of the deo operon of Escherichia coli. EMBO J. 4(12):3333-8 (1985). [Pubmed]

Valentin-Hansen P., Aiba H., Schumperli D. The structure of tandem regulatory regions in the deo operon of Escherichia coli K12. EMBO J. 1(3):317-322 (1982). [Pubmed]

Dandanell G. DeoR repression at-a-distance only weakly responds to changes in interoperator separation and DNA topology. Nucleic Acids Res. 20(20):5407-12 (1992). [Pubmed]

Hammer K., Bech L., Hobolth P., Dandanell G. DNA specificity of Escherichia coli deoP1 operator-DeoR repressor recognition. Mol Gen Genet. 237(1-2):129-33 (1993). [Pubmed]

Barbier CS., Short SA. Studies on deo operon regulation in Escherichia coli: cloning and expression of the cytR structural gene. Gene. 36(1-2):37-44 (1985). [Pubmed]

Valentin-Hansen P., Albrechtsen B., Love Larsen JE. DNA-protein recognition: demonstration of three genetically separated operator elements that are required for repression of the Escherichia coli deoCABD promoters by the DeoR repressor. EMBO J. 5(8):2015-21 (1986). [Pubmed]

Hammer-Jespersen K., Munch-Ptersen A. Multiple regulation of nucleoside catabolizing enzymes: regulation of the deo operon by the cytR and deoR gene products. Mol Gen Genet. 137(4):327-35 (1975). [Pubmed]
Related annotations: PaperBLAST

Disclaimer and license

These data are available AS IS and at your own risk. The EEAD/CSIC do not give any representation or warranty nor assume any liability or responsibility for the data nor the results posted (whether as to their accuracy, completeness, quality or otherwise). Access to these data is available free of charge for ordinary use in the course of research. Downloaded data have CC-BY-NC-SA license. FootprintDB is also available at RSAT::Plants, part of the INB/ELIXIR-ES resources portfolio.