Transcription Factor

Accessions: ECK120004751 (RegulonDB 7.5)
Names: FadR, FadR DNA-binding transcriptional dual regulator
Organisms: ECK12
Libraries: RegulonDB 7.5 1
1 Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado L, Garcia-Sotelo JS, Weiss V, Solano-Lira H, Martinez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernandez S, Alquicira-Hernandez K, Lopez-Fuentes A, Porron-Sotelo L, Huerta AM, Bonavides-Martinez C, Balderas-Martinez YI, Pannier L, Olvera M, Labastida A, Jimenez-Jacinto V, Vega-Alvarado L, Del Moral-Chavez V, Hernandez-Alvarez A, Morett E, Collado-Vides J. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 2013 Jan 1;41(D1):D203-D213. [Pubmed]
Notes: FadR Fatty acid degradation Regulon Overath P,1969 is a multifunctional dual regulator DiRusso CC.,1988that exerts negative control over the fatty acid degradative regulon Simons RW,1980; Simons RW,1980and acetate metabolism Maloy SR,1981 whereas it is responsible for the maximal expression of unsaturated fatty acid biosynthesis Nunn WD,1983 FadR regulates coordinately fatty acid biosynthesis and fatty acid degradation at the level of transcription DiRusso CC,1993 In this way, FadR functions as switch between fatty acid β-oxidation and fatty acid biosynthesis Xu Y,2001br>FadR belongs to the GntR family van Aalten DM,2000; Haydon DJ,1991 However, Xu et al; (2001) reported that homologies to CAP and the Tet repressor based on structure are more relevant and they have categorized FadR as a chimera of two motifs Xu Y,2001FadR appears to be a two-domain dimeric molecule in which the N-terminal domains Raman N,1995; Raman N,1997; DiRusso CC,1992; DiRusso CC.,1988 bind to DNA whereas the C-terminal domain binds the fatty acyl coenzyme A (acyl-CoA) Xu Y,2001 In addition, there is a linker which links both the N terminal and C terminal; The binding of the acyl-CoA disrupts a buried network of charged and polar residues in the C-terminal domain, and the resulting conformational change is transmitted to the N-terminal domain via a domain-spanning α-helix CoA Xu Y,2001 in this way there is loss of DNA binding van Aalten DM,2000 since acyl-CoA regulates DNA binding by FadR DiRusso CC,1992; Cronan JE.,1997The α/β N-terminal domain (α1-β1-α2-α3-β2-β3) has a winged-helix motif, and the α-helical C-terminal domain (α6-α7-α8-α9-α10-α11-α12) resembles the sensor domain of the Tet repressor Xu Y,2001and PAS domain, in particular the photoactive yellow protein van Aalten DM,2000 and finally the linker comprising two short α-helices (α4-α5) Xu Y,2001The binding of FadR to DNA is determined by the localization of the α3 recognition helices that are paired together at the dimer interface Xu Y,2001The DNA-binding domain is very highly conserved among FadR-containing bacteria, whereas the C-terminal acyl-CoA-binding domain shows only weak conservation Iram SH,2005A FadR-type regulator has been identified in Vibrio vulnificus Brown RN,2008 Corynebacterium glutamicum Georgi T,2008 Salmonella enterica, Vibrio cholerae, Pasteurella multocida, and Hemophilus influenzae Iram SH,2005FadR is a homodimer Raman N,1997; Xu Y,2001that recognizes a palindromic sequence, 5'-TGGNNNNNCCA-3' Xu Y,2001Review: Marrakchi H,2002; Cronan JE,1998.; fatty acid metabolic process; lipid metabolic process; intracellular; sequence-specific DNA binding transcription factor activity; DNA binding; fatty-acyl-CoA binding; transcription, DNA-dependent; transcription activator activity; transcription repressor activity; regulation of fatty acid metabolic process; regulation of transcription, DNA-dependent; positive regulation of transcription, DNA-dependent; negative regulation of transcription, DNA-dependent; fatty acid oxidation; cytoplasm; Transcription related; operon; regulon; repressor; fatty acids; activator
Length: 240
Pfam Domains: 11-71 Bacterial regulatory proteins, gntR family
72-234 FadR C-terminal domain
Sequence:
(in bold interface residues)
1 MVIKAQSPAGFAEEYIIESIWNNRFPPGTILPAERELSELIGVTRTTLREVLQRLARDGW 60
61 LTIQHGKPTKVNNFWETSGLNILETLARLDHESVPQLIDNLLSVRTNISTIFIRTAFRQH 120
121 PDKAQEVLATANEVADHADAFAELDYNIFRGLAFASGNPIYGLILNGMKGLYTRIGRHYF 180
181 ANPEARSLALGFYHKLSALCSEGAHDQVYETVRRYGHESGEIWHRMQKNLPGDLAIQGR* 240
Interface Residues: 33, 34, 35, 38, 44, 45, 46, 47, 48, 49, 50, 51, 64, 65, 70
3D-footprint Homologues: 6wg7_G, 4wwc_B, 4h0e_A, 4p9u_F, 1h9t_B, 6za3_B, 4u0y_B, 3mzh_A, 4fx4_B
Binding Motifs: FadR AgCTGGTCyGAyswsT
Binding Sites: ECK120011826
ECK120011890
ECK120011892
ECK120011901
ECK120012925
ECK120012927
ECK120012929
ECK120012975
ECK120013404
ECK120013411
ECK120017076
ECK120030279
ECK125110247
ECK125141192
Publications: Marrakchi H., Zhang YM., Rock CO. Mechanistic diversity and regulation of Type II fatty acid synthesis. Biochem Soc Trans. 30(Pt 6):1050-5 (2002). [Pubmed]

Cronan JE., Subrahmanyam S. FadR, transcriptional co-ordination of metabolic expediency. Mol Microbiol. 29(4):937-43 (1998). [Pubmed]

Georgi T., Engels V., Wendisch VF. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J Bacteriol. 190(3):963-71 (2008). [Pubmed]

Brown RN., Gulig PA. Regulation of fatty acid metabolism by FadR is essential for Vibrio vulnificus to cause infection of mice. J Bacteriol. 190(23):7633-44 (2008). [Pubmed]

Iram SH., Cronan JE. Unexpected functional diversity among FadR fatty acid transcriptional regulatory proteins. J Biol Chem. 280(37):32148-56 (2005). [Pubmed]

Overath P., Pauli G., Schairer HU. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem. 7(4):559-74 (1969). [Pubmed]

DiRusso CC. Nucleotide sequence of the fadR gene, a multifunctional regulator of fatty acid metabolism in Escherichia coli. Nucleic Acids Res. 16(16):7995-8009 (1988). [Pubmed]

Simons RW., Egan PA., Chute HT., Nunn WD. Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR. J Bacteriol. 142(2):621-32 (1980). [Pubmed]

Simons RW., Hughes KT., Nunn WD. Regulation of fatty acid degradation in Escherichia coli: dominance studies with strains merodiploid in gene fadR. J Bacteriol. 143(2):726-30 (1980). [Pubmed]

Maloy SR., Nunn WD. Role of gene fadR in Escherichia coli acetate metabolism. J Bacteriol. 148(1):83-90 (1981). [Pubmed]

Nunn WD., Giffin K., Clark D., Cronan JE. Role for fadR in unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol. 154(2):554-60 (1983). [Pubmed]

DiRusso CC., Metzger AK., Heimert TL. Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR. Mol Microbiol. 7(2):311-22 (1993). [Pubmed]

Xu Y., Heath RJ., Li Z., Rock CO., White SW. The FadR.DNA complex. Transcriptional control of fatty acid metabolism in Escherichia coli. J Biol Chem. 276(20):17373-9 (2001). [Pubmed]

van Aalten DM., DiRusso CC., Knudsen J., Wierenga RK. Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. EMBO J. 19(19):5167-77 (2000). [Pubmed]

Haydon DJ., Guest JR. A new family of bacterial regulatory proteins. FEMS Microbiol Lett. 63(2-3):291-5 (1991). [Pubmed]

Raman N., DiRusso CC. Analysis of acyl coenzyme A binding to the transcription factor FadR and identification of amino acid residues in the carboxyl terminus required for ligand binding. J Biol Chem. 270(3):1092-7 (1995). [Pubmed]

Raman N., Black PN., DiRusso CC. Characterization of the fatty acid-responsive transcription factor FadR. Biochemical and genetic analyses of the native conformation and functional domains. J Biol Chem. 272(49):30645-50 (1997). [Pubmed]

DiRusso CC., Heimert TL., Metzger AK. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem. 267(12):8685-91 (1992). [Pubmed]

van Aalten DM., Knudsen J., DiRusso CC., Kokko T., Wierenga RK. Crystallization and X-ray diffraction studies of the fatty-acid responsive transcription factor FadR from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 56 ( Pt 4):469-71 (2000). [Pubmed]

Cronan JE. In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor. J Bacteriol. 179(5):1819-23 (1997). [Pubmed]
Related annotations: PaperBLAST

Disclaimer and license

These data are available AS IS and at your own risk. The EEAD/CSIC do not give any representation or warranty nor assume any liability or responsibility for the data nor the results posted (whether as to their accuracy, completeness, quality or otherwise). Access to these data is available free of charge for ordinary use in the course of research. Downloaded data have CC-BY-NC-SA license. FootprintDB is also available at RSAT::Plants, part of the INB/ELIXIR-ES resources portfolio.