Transcription Factor

Accessions: ECK120004636 (RegulonDB 7.5)
Names: CRP, CRP transcriptional dual regulator
Organisms: ECK12
Libraries: RegulonDB 7.5 1
1 Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado L, Garcia-Sotelo JS, Weiss V, Solano-Lira H, Martinez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernandez S, Alquicira-Hernandez K, Lopez-Fuentes A, Porron-Sotelo L, Huerta AM, Bonavides-Martinez C, Balderas-Martinez YI, Pannier L, Olvera M, Labastida A, Jimenez-Jacinto V, Vega-Alvarado L, Del Moral-Chavez V, Hernandez-Alvarez A, Morett E, Collado-Vides J. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 2013 Jan 1;41(D1):D203-D213. [Pubmed]
Notes: global; cytoplasm; Transcription related; repressor; zinc ion binding; regulation of transcription, DNA-dependent; cAMP binding; intracellular; sequence-specific DNA binding transcription factor activity; DNA binding; nucleotide binding; transcription, DNA-dependent; transcription activator activity; transcription repressor activity; activator
Length: 211
Pfam Domains: 23-111 Cyclic nucleotide-binding domain
142-206 Crp-like helix-turn-helix domain
166-197 Bacterial regulatory proteins, crp family
Sequence:
(in bold interface residues)
1 MVLGKPQTDPTLEWFLSHCHIHKYPSKSTLIHQGEKAETLYYIVKGSVAVLIKDEEGKEM 60
61 ILSYLNQGDFIGELGLFEEGQERSAWVRAKTACEVAEISYKKFRQLIQVNPDILMRLSAQ 120
121 MARRLQVTSEKVGNLAFLDVTGRIAQTLLNLAKQPDAMTHPDGMQIKITRQEIGQIVGCS 180
181 RETVGRILKMLEDQNLISAHGKTIVVYGTR*
Interface Residues: 27, 81, 166, 171, 180, 181, 182, 183, 185, 186
3D-footprint Homologues: 3iyd_H, 4a12_B, 2xro_E, 5i2d_R, 3mzh_A, 7pza_B, 3e6c_C, 4i2o_B
Binding Motifs: CRP wtgtGAwyyasaTCACAwwwtt
Binding Sites: ECK120011238
ECK120011310
ECK120011316
ECK120011318
ECK120011343
ECK120011443
ECK120011446
ECK120011452
ECK120011480
ECK120011487
ECK120011567
ECK120011754
ECK120011771
ECK120011773
ECK120011784
ECK120011795
ECK120011798
ECK120011800
ECK120011812
ECK120011814
ECK120011862
ECK120011865
ECK120011916
ECK120011945
ECK120011947
ECK120012034
ECK120012046
ECK120012054
ECK120012058
ECK120012085
ECK120012116
ECK120012129
ECK120012137
ECK120012194
ECK120012197
ECK120012200
ECK120012257
ECK120012343
ECK120012345
ECK120012356
ECK120012359
ECK120012374
ECK120012403
ECK120012405
ECK120012438
ECK120012442
ECK120012490
ECK120012508
ECK120012523
ECK120012557
ECK120012567
ECK120012575
ECK120012583
ECK120012600
ECK120012662
ECK120012673
ECK120012702
ECK120012710
ECK120012721
ECK120012736
ECK120012738
ECK120012754
ECK120012776
ECK120012779
ECK120012830
ECK120012882
ECK120012909
ECK120012917
ECK120012949
ECK120012973
ECK120013023
ECK120013025
ECK120013030
ECK120013033
ECK120013036
ECK120013038
ECK120013041
ECK120013043
ECK120013045
ECK120013047
ECK120013051
ECK120013055
ECK120013057
ECK120013059
ECK120013287
ECK120013297
ECK120013331
ECK120013333
ECK120013340
ECK120013365
ECK120013367
ECK120013379
ECK120013388
ECK120013392
ECK120013413
ECK120013423
ECK120013437
ECK120013439
ECK120013442
ECK120013446
ECK120013466
ECK120013468
ECK120013470
ECK120013483
ECK120013489
ECK120013493
ECK120013520
ECK120013523
ECK120013545
ECK120013562
ECK120013565
ECK120013571
ECK120013574
ECK120013580
ECK120013643
ECK120013648
ECK120013651
ECK120013653
ECK120013707
ECK120013709
ECK120013711
ECK120013713
ECK120013715
ECK120013719
ECK120013721
ECK120013723
ECK120013728
ECK120013770
ECK120013797
ECK120013820
ECK120013822
ECK120013834
ECK120013889
ECK120013893
ECK120013944
ECK120013966
ECK120013972
ECK120013974
ECK120013988
ECK120013990
ECK120013996
ECK120014009
ECK120014011
ECK120014013
ECK120014032
ECK120014061
ECK120014110
ECK120014121
ECK120014126
ECK120014148
ECK120014150
ECK120014152
ECK120014163
ECK120015205
ECK120015231
ECK120015562
ECK120015669
ECK120015678
ECK120015684
ECK120015703
ECK120015745
ECK120015761
ECK120015998
ECK120016026
ECK120016028
ECK120016030
ECK120016034
ECK120016038
ECK120016040
ECK120016042
ECK120016044
ECK120016046
ECK120016048
ECK120016050
ECK120016052
ECK120016054
ECK120016149
ECK120016152
ECK120016489
ECK120016534
ECK120016824
ECK120016826
ECK120016828
ECK120016830
ECK120016832
ECK120016834
ECK120016836
ECK120016838
ECK120016840
ECK120016842
ECK120016844
ECK120016846
ECK120016848
ECK120016850
ECK120016852
ECK120016854
ECK120016856
ECK120016858
ECK120016860
ECK120016862
ECK120016864
ECK120016866
ECK120016868
ECK120016887
ECK120018496
ECK120018504
ECK120026335
ECK120026467
ECK120029481
ECK120029537
ECK120029608
ECK120030688
ECK120033077
ECK120033079
ECK120033081
ECK120034575
ECK120034894
ECK120035029
ECK120035048
ECK120048808
ECK120048830
ECK120048932
ECK120051348
ECK120051350
ECK120051352
ECK120051468
ECK125108611
ECK125108617
ECK125108619
ECK125108621
ECK125108648
ECK125110251
ECK125134898
ECK125135087
ECK125135218
ECK125135220
ECK125135222
ECK125135224
ECK125135226
ECK125135229
ECK125135236
ECK125141164
ECK125141209
ECK125141242
ECK125141244
ECK125141260
ECK125141459
ECK125141476
ECK125141477
Publications: Zheng D., Constantinidou C., Hobman JL., Minchin SD. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res. 32(19):5874-93 (2004). [Pubmed]

Nishino K., Senda Y., Yamaguchi A. CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes. J Antibiot (Tokyo). 61(3):120-7 (2008). [Pubmed]

Belyaeva TA., Wade JT., Webster CL., Howard VJ., Thomas MS., Hyde EI., Busby SJ. Transcription activation at the Escherichia coli melAB promoter: the role of MelR and the cyclic AMP receptor protein. Mol Microbiol. 36(1):211-22 (2000). [Pubmed]

Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 11(2):87-93 (2008). [Pubmed]

Gorke B., Stulke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 6(8):613-24 (2008). [Pubmed]

Kolb A., Busby S., Buc H., Garges S., Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 62:749-95 (1993). [Pubmed]

Landis L., Xu J., Johnson RC. The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli. Genes Dev. 13(23):3081-91 (1999). [Pubmed]

Balsalobre C., Johansson J., Uhlin BE. Cyclic AMP-dependent osmoregulation of crp gene expression in Escherichia coli. J Bacteriol. 188(16):5935-44 (2006). [Pubmed]

Johansson J., Balsalobre C., Wang SY., Urbonaviciene J., Jin DJ., Sonden B., Uhlin BE. Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP-CRP and the (p)ppGpp regulons in Escherichia coli. Cell. 102(4):475-85 (2000). [Pubmed]

Jackson DW., Simecka JW., Romeo T. Catabolite repression of Escherichia coli biofilm formation. J Bacteriol. 184(12):3406-10 (2002). [Pubmed]

Mao XJ., Huo YX., Buck M., Kolb A., Wang YP. Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli. Nucleic Acids Res. 35(5):1432-40 (2007). [Pubmed]

Paul L., Mishra PK., Blumenthal RM., Matthews RG. Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR. BMC Microbiol. 7:2 (2007). [Pubmed]

Tian ZX., Li QS., Buck M., Kolb A., Wang YP. The CRP-cAMP complex and downregulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in Escherichia coli. Mol Microbiol. 41(4):911-24 (2001). [Pubmed]

Zhang Z., Gosset G., Barabote R., Gonzalez CS., Cuevas WA., Saier MH. Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol. 187(3):980-90 (2005). [Pubmed]

Sinha S., Cameron AD., Redfield RJ. Sxy induces a CRP-S regulon in Escherichia coli. J Bacteriol. 191(16):5180-95 (2009). [Pubmed]

Hirakawa H., Inazumi Y., Senda Y., Kobayashi A., Hirata T., Nishino K., Yamaguchi A. N-acetyl-d-glucosamine induces the expression of multidrug exporter genes, mdtEF, via catabolite activation in Escherichia coli. J Bacteriol. 188(16):5851-8 (2006). [Pubmed]

De Lay N., Gottesman S. The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol. 191(2):461-76 (2009). [Pubmed]

Khankal R., Chin JW., Ghosh D., Cirino PC. Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng. 3:13 (2009). [Pubmed]

Gutierrez-Rios RM., Freyre-Gonzalez JA., Resendis O., Collado-Vides J., Saier M., Gosset G. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiol. 7:53 (2007). [Pubmed]

Gosset G., Zhang Z., Nayyar S., Cuevas WA., Saier MH. Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol. 186(11):3516-24 (2004). [Pubmed]

Aiba H. Autoregulation of the Escherichia coli crp gene: CRP is a transcriptional repressor for its own gene. Cell. 32(1):141-9 (1983). [Pubmed]

Hanamura A., Aiba H. A new aspect of transcriptional control of the Escherichia coli crp gene: positive autoregulation. Mol Microbiol. 6(17):2489-97 (1992). [Pubmed]

Gonzalez-Gil G., Kahmann R., Muskhelishvili G. Regulation of crp transcription by oscillation between distinct nucleoprotein complexes. EMBO J. 17(10):2877-85 (1998). [Pubmed]

Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 66(1):104-10 (1970). [Pubmed]

Emmer M., deCrombrugghe B., Pastan I., Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci U S A. 66(2):480-7 (1970). [Pubmed]

McKay DB., Steitz TA. Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature. 290(5809):744-9 (1981). [Pubmed]

Aiba H., Fujimoto S., Ozaki N. Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucleic Acids Res. 10(4):1345-61 (1982). [Pubmed]

Goldberg S.R, Henningfield J.E. Reinforcing effects of nicotine in humans and experimental animals responding under intermittent schedules of i.v. drug injection. Pharmacology, biochemistry, and behavior 30:227-34 (1988). [Pubmed]

Blaszczyk U., Polit A., Guz A., Wasylewski Z. Interaction of cAMP receptor protein from Escherichia coli with cAMP and DNA studied by dynamic light scattering and time-resolved fluorescence anisotropy methods. J Protein Chem. 20(8):601-10 (2001). [Pubmed]

Gaston K., Bell A., Kolb A., Buc H., Busby S. Stringent spacing requirements for transcription activation by CRP. Cell. 62(4):733-43 (1990). [Pubmed]

Tebbutt J., Rhodius VA., Webster CL., Busby SJ. Architectural requirements for optimal activation by tandem CRP molecules at a class I CRP-dependent promoter. FEMS Microbiol Lett. 210(1):55-60 (2002). [Pubmed]

Zhou Y., Pendergrast PS., Bell A., Williams R., Busby S., Ebright RH. The functional subunit of a dimeric transcription activator protein depends on promoter architecture. EMBO J. 13(19):4549-57 (1994). [Pubmed]

Igarashi K., Ishihama A. Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell. 65(6):1015-22 (1991). [Pubmed]

Savery N., Rhodius V., Busby S. Protein-protein interactions during transcription activation: the case of the Escherichia coli cyclic AMP receptor protein. Philos Trans R Soc Lond B Biol Sci. 351(1339):543-50 (1996). [Pubmed]

Ebright RH. Transcription activation at Class I CAP-dependent promoters. Mol Microbiol. 8(5):797-802 (1993). [Pubmed]

Savery NJ., Lloyd GS., Kainz M., Gaal T., Ross W., Ebright RH., Gourse RL., Busby SJ. Transcription activation at Class II CRP-dependent promoters: identification of determinants in the C-terminal domain of the RNA polymerase alpha subunit. EMBO J. 17(12):3439-47 (1998). [Pubmed]

Barnard A., Wolfe A., Busby S. Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr Opin Microbiol. 7(2):102-8 (2004). [Pubmed]

Beatty CM., Browning DF., Busby SJ., Wolfe AJ. Cyclic AMP receptor protein-dependent activation of the Escherichia coli acsP2 promoter by a synergistic class III mechanism. J Bacteriol. 185(17):5148-57 (2003). [Pubmed]

Wade JT., Belyaeva TA., Hyde EI., Busby SJ. A simple mechanism for co-dependence on two activators at an Escherichia coli promoter. EMBO J. 20(24):7160-7 (2001). [Pubmed]

Wickstrum JR., Santangelo TJ., Egan SM. Cyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli. J Bacteriol. 187(19):6708-18 (2005). [Pubmed]

Lobell RB., Schleif RF. AraC-DNA looping: orientation and distance-dependent loop breaking by the cyclic AMP receptor protein. J Mol Biol. 218(1):45-54 (1991). [Pubmed]

Polayes DA., Rice PW., Garner MM., Dahlberg JE. Cyclic AMP-cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli. J Bacteriol. 170(7):3110-4 (1988). [Pubmed]

Mollegaard NE., Rasmussen PB., Valentin-Hansen P., Nielsen PE. Characterization of promoter recognition complexes formed by CRP and CytR for repression and by CRP and RNA polymerase for activation of transcription on the Escherichia coli deoP2 promoter. J Biol Chem. 268(23):17471-7 (1993). [Pubmed]

Valentin-Hansen P., Sogaard-Andersen L., Pedersen H. A flexible partnership: the CytR anti-activator and the cAMP-CRP activator protein, comrades in transcription control. Mol Microbiol. 20(3):461-6 (1996). [Pubmed]

McNeill R., Sare GM., Manoharan M., Testa HJ., Mann DM., Neary D., Snowden JS., Varma AR. Accuracy of single-photon emission computed tomography in differentiating frontotemporal dementia from Alzheimer's disease. J Neurol Neurosurg Psychiatry. 78(4):350-5 (2007). [Pubmed]

Perini LT., Doherty EA., Werner E., Senear DF. Multiple specific CytR binding sites at the Escherichia coli deoP2 promoter mediate both cooperative and competitive interactions between CytR and cAMP receptor protein. J Biol Chem. 271(52):33242-55 (1996). [Pubmed]

Liu M., Garges S., Adhya S. lacP1 promoter with an extended -10 motif. Pleiotropic effects of cyclic AMP protein at different steps of transcription initiation. J Biol Chem. 279(52):54552-7 (2004). [Pubmed]

Rostoks N., Park S., Choy HE. Reiterative transcription initiation from galP2 promoter of Escherichia coli. Biochim Biophys Acta. 1491(1-3):185-95 (2000). [Pubmed]

Deutscher J., Francke C., Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 70(4):939-1031 (2006). [Pubmed]

Hogema BM., Arents JC., Bader R., Eijkemans K., Yoshida H., Takahashi H., Aiba H., Postma PW. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol Microbiol. 30(3):487-98 (1998). [Pubmed]

Feucht BU., Saier MH. Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. J Bacteriol. 141(2):603-10 (1980). [Pubmed]

Reddy P., Kamireddi M. Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIA(Glc) of the phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol. 180(3):732-6 (1998). [Pubmed]

Park YH., Lee BR., Seok YJ., Peterkofsky A. In vitro reconstitution of catabolite repression in Escherichia coli. J Biol Chem. 281(10):6448-54 (2006). [Pubmed]

Bettenbrock K., Sauter T., Jahreis K., Kremling A., Lengeler JW., Gilles ED. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol. 189(19):6891-900 (2007). [Pubmed]

Ishizuka H., Hanamura A., Inada T., Aiba H. Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoregulation of the crp gene. EMBO J. 13(13):3077-82 (1994). [Pubmed]

Saier MH. Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev. 53(1):109-20 (1989). [Pubmed]

Hanamura A., Aiba H. Molecular mechanism of negative autoregulation of Escherichia coli crp gene. Nucleic Acids Res. 19(16):4413-9 (1991). [Pubmed]

Nelson SO., Wright JK., Postma PW. The mechanism of inducer exclusion. Direct interaction between purified III of the phosphoenolpyruvate:sugar phosphotransferase system and the lactose carrier of Escherichia coli. EMBO J. 2(5):715-720 (1983). [Pubmed]

Osumi T., Saier MH. Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease. Proc Natl Acad Sci U S A. 79(5):1457-61 (1982). [Pubmed]

Dills SS., Schmidt MR., Saier MH. Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli. J Cell Biochem. 18(2):239-44 (1982). [Pubmed]

Sondej M., Weinglass AB., Peterkofsky A., Kaback HR. Binding of enzyme IIAGlc, a component of the phosphoenolpyruvate:sugar phosphotransferase system, to the Escherichia coli lactose permease. Biochemistry. 41(17):5556-65 (2002). [Pubmed]

Zhang H., Chong H., Ching CB., Jiang R. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol Bioeng. 109(5):1165-72 (2012). [Pubmed]

Grainger DC., Hurd D., Harrison M., Holdstock J., Busby SJ. Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc Natl Acad Sci U S A. 102(49):17693-8 (2005). [Pubmed]

Robison K., McGuire AM., Church GM. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol. 284(2):241-54 (1998). [Pubmed]

Fic E., Bonarek P., Gorecki A., Kedracka-Krok S., Mikolajczak J., Polit A., Tworzydlo M., Dziedzicka-Wasylewska M., Wasylewski Z. cAMP Receptor Protein from Escherichia coli as a Model of Signal Transduction in Proteins - A Review. J Mol Microbiol Biotechnol (2008). [Pubmed]

Korner H., Sofia HJ., Zumft WG. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev. 27(5):559-92 (2003). [Pubmed]

Green J., Scott C., Guest JR. Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. Adv Microb Physiol. 44:1-34 (2001). [Pubmed]

McKay DB., Weber IT., Steitz TA. Structure of catabolite gene activator protein at 2.9-A resolution. Incorporation of amino acid sequence and interactions with cyclic AMP. J Biol Chem. 257(16):9518-24 (1982). [Pubmed]

Weber IT., Steitz TA. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution. J Mol Biol. 198(2):311-26 (1987). [Pubmed]

Passner JM., Schultz SC., Steitz TA. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution. J Mol Biol. 304(5):847-59 (2000). [Pubmed]

Schultz SC., Shields GC., Steitz TA. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science. 253(5023):1001-7 (1991). [Pubmed]

Parkinson G., Wilson C., Gunasekera A., Ebright YW., Ebright RE., Berman HM. Structure of the CAP-DNA complex at 2.5 angstroms resolution: a complete picture of the protein-DNA interface. J Mol Biol. 260(3):395-408 (1996). [Pubmed]

Passner JM., Steitz TA. The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proc Natl Acad Sci U S A. 94(7):2843-7 (1997). [Pubmed]

Benoff B., Yang H., Lawson CL., Parkinson G., Liu J., Blatter E., Ebright YW., Berman HM., Ebright RH. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science. 297(5586):1562-6 (2002). [Pubmed]

Popovych N., Tzeng SR., Tonelli M., Ebright RH., Kalodimos CG. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci U S A. 106(17):6927-32 (2009). [Pubmed]

Sharma H., Yu S., Kong J., Wang J., Steitz TA. Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proc Natl Acad Sci U S A. 106(39):16604-9 (2009). [Pubmed]

Ebright RH., Ebright YW., Gunasekera A. Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site. Nucleic Acids Res. 17(24):10295-305 (1989). [Pubmed]

Wu HM., Crothers DM. The locus of sequence-directed and protein-induced DNA bending. Nature. 308(5959):509-13 (). [Pubmed]

Chen S., Gunasekera A., Zhang X., Kunkel TA., Ebright RH., Berman HM. Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: alteration of DNA binding specificity through alteration of DNA kinking. J Mol Biol. 314(1):75-82 (2001). [Pubmed]

Zhou Y., Zhang X., Ebright RH. Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc Natl Acad Sci U S A. 90(13):6081-5 (1993). [Pubmed]

Niu W., Zhou Y., Dong Q., Ebright YW., Ebright RH. Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). I. Saturation and alanine-scanning mutagenesis. J Mol Biol. 243(4):595-602 (1994). [Pubmed]

Niu W., Kim Y., Tau G., Heyduk T., Ebright RH. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell. 87(6):1123-34 (1996). [Pubmed]

Busby S., Ebright RH. Transcription activation by catabolite activator protein (CAP). J Mol Biol. 293(2):199-213 (1999). [Pubmed]

Ushida C., Aiba H. Helical phase dependent action of CRP: effect of the distance between the CRP site and the -35 region on promoter activity. Nucleic Acids Res. 18(21):6325-30 (1990). [Pubmed]
Related annotations: PaperBLAST

Disclaimer and license

These data are available AS IS and at your own risk. The EEAD/CSIC do not give any representation or warranty nor assume any liability or responsibility for the data nor the results posted (whether as to their accuracy, completeness, quality or otherwise). Access to these data is available free of charge for ordinary use in the course of research. Downloaded data have CC-BY-NC-SA license. FootprintDB is also available at RSAT::Plants, part of the INB/ELIXIR-ES resources portfolio.