Transcription Factor

Accessions: ECK120004533 (RegulonDB 7.5)
Names: ArcA, ArcA transcriptional dual regulator
Organisms: ECK12
Libraries: RegulonDB 7.5 1
1 Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado L, Garcia-Sotelo JS, Weiss V, Solano-Lira H, Martinez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernandez S, Alquicira-Hernandez K, Lopez-Fuentes A, Porron-Sotelo L, Huerta AM, Bonavides-Martinez C, Balderas-Martinez YI, Pannier L, Olvera M, Labastida A, Jimenez-Jacinto V, Vega-Alvarado L, Del Moral-Chavez V, Hernandez-Alvarez A, Morett E, Collado-Vides J. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 2013 Jan 1;41(D1):D203-D213. [Pubmed]
Notes: other (mechanical, nutritional, oxidative stress); transcription repressor activity; repressor; operon; activator; Transcription related; cytoplasm; intracellular signal transduction; sequence-specific DNA binding transcription factor activity; negative regulation of transcription, DNA-dependent; positive regulation of transcription, DNA-dependent; intracellular; regulation of transcription, DNA-dependent; two-component signal transduction system (phosphorelay); two-component response regulator activity; transcription activator activity; two component regulatory systems (external signal)
Length: 239
Pfam Domains: 6-112 Response regulator receiver domain
156-232 Transcriptional regulatory protein, C terminal
Sequence:
(in bold interface residues)
1 MQTPHILIVEDELVTRNTLKSIFEAEGYDVFEATDGAEMHQILSEYDINLVIMDINLPGK 60
61 NGLLLARELREQANVALMFLTGRDNEVDKILGLEIGADDYITKPFNPRELTIRARNLLSR 120
121 TMNLGTVSEERRSVESYKFNGWELDINSRSLIGPDGEQYKLPRSEFRAMLHFCENPGKIQ 180
181 SRAELLKKMTGRELKPHDRTVDVTIRRIRKHFESTPDTPEIIATIHGEGYRFCGDLED*
Interface Residues: 198, 199, 200, 202, 203, 204, 206, 207, 226
3D-footprint Homologues: 8jo2_H, 8hih_Q, 4kfc_B, 6lxn_A, 8hml_B, 4nhj_A, 7e1b_B, 5ed4_A, 2z33_A, 5x5l_H, 8b4b_W
Binding Motifs: ArcA wamawwTwrTTAAma
Binding Sites: ECK120011372
ECK120011435
ECK120011512
ECK120011880
ECK120011964
ECK120011968
ECK120011970
ECK120011972
ECK120011974
ECK120011979
ECK120011981
ECK120011983
ECK120011985
ECK120011987
ECK120011989
ECK120011995
ECK120011997
ECK120011999
ECK120012001
ECK120012003
ECK120012005
ECK120012007
ECK120012009
ECK120012011
ECK120012013
ECK120012016
ECK120012018
ECK120012227
ECK120012229
ECK120012231
ECK120012242
ECK120012244
ECK120012341
ECK120012423
ECK120012425
ECK120012427
ECK120012884
ECK120012994
ECK120012996
ECK120013003
ECK120013005
ECK120013007
ECK120013301
ECK120013303
ECK120013305
ECK120013427
ECK120013452
ECK120013480
ECK120013638
ECK120013699
ECK120013701
ECK120013703
ECK120013705
ECK120013801
ECK120013803
ECK120013815
ECK120013817
ECK120013841
ECK120013860
ECK120013910
ECK120013994
ECK120014123
ECK120014128
ECK120014130
ECK120014132
ECK120014134
ECK120014136
ECK120014138
ECK120014140
ECK120014167
ECK120016996
ECK120016998
ECK120017022
ECK120023168
ECK120023169
ECK120023170
ECK120023171
ECK120030258
ECK120030289
ECK120030291
ECK120030684
ECK120033000
ECK120033004
ECK120051323
ECK120051356
ECK120051359
ECK120051362
ECK125110249
ECK125134663
ECK125141248
Publications: Govantes F., Orjalo AV., Gunsalus RP. Interplay between three global regulatory proteins mediates oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon. Mol Microbiol. 38(5):1061-73 (2000). [Pubmed]

Waegeman H., Beauprez J., Moens H., Maertens J., De Mey M., Foulquie-Moreno MR., Heijnen JJ., Charlier D., Soetaert W. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol. 11:70 (2011). [Pubmed]

Iuchi S., Lin EC. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci U S A. 85(6):1888-92 (1988). [Pubmed]

Iuchi S., Lin EC. Adaptation of Escherichia coli to redox environments by gene expression. Mol Microbiol. 9(1):9-15 (1993). [Pubmed]

Gunsalus RP., Park SJ. Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol. 145(5-6):437-50 (1994). [Pubmed]

Iuchi S., Lin EC. Adaptation of Escherichia coli to respiratory conditions: regulation of gene expression. Cell. 66(1):5-7 (1991). [Pubmed]

Lin EC., Iuchi S. Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria. Annu Rev Genet. 25:361-87 (1991). [Pubmed]

Mika F., Hengge R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev. 19(22):2770-81 (2005). [Pubmed]

Brondsted L., Atlung T. Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli. J Bacteriol. 176(17):5423-8 (1994). [Pubmed]

Lynch AS., Lin EC. Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: characterization of DNA binding at target promoters. J Bacteriol. 178(21):6238-49 (1996). [Pubmed]

Salmon KA., Hung SP., Steffen NR., Krupp R., Baldi P., Hatfield GW., Gunsalus RP. Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J Biol Chem. 280(15):15084-96 (2005). [Pubmed]

Liu X., De Wulf P. Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem. 279(13):12588-97 (2004). [Pubmed]

Perrenoud A., Sauer U. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol. 187(9):3171-9 (2005). [Pubmed]

Alexeeva S., Hellingwerf KJ., Teixeira de Mattos MJ. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol. 185(1):204-9 (2003). [Pubmed]

Levanon SS., San KY., Bennett GN. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng. 89(5):556-64 (2005). [Pubmed]

Compan I., Touati D. Anaerobic activation of arcA transcription in Escherichia coli: roles of Fnr and ArcA. Mol Microbiol. 11(5):955-64 (1994). [Pubmed]

Jeon Y., Lee YS., Han JS., Kim JB., Hwang DS. Multimerization of phosphorylated and non-phosphorylated ArcA is necessary for the response regulator function of the Arc two-component signal transduction system. J Biol Chem. 276(44):40873-9 (2001). [Pubmed]

Ishige K., Nagasawa S., Tokishita S., Mizuno T. A novel device of bacterial signal transducers. EMBO J. 13(21):5195-202 (1994). [Pubmed]

Iuchi S., Lin EC. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J Bacteriol. 174(12):3972-80 (1992). [Pubmed]

Kwon O., Georgellis D., Lin EC. Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli. J Bacteriol. 182(13):3858-62 (2000). [Pubmed]

Tsuzuki M., Ishige K., Mizuno T. Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants. Mol Microbiol. 18(5):953-62 (1995). [Pubmed]

Georgellis D., Lynch AS., Lin EC. In vitro phosphorylation study of the arc two-component signal transduction system of Escherichia coli. J Bacteriol. 179(17):5429-35 (1997). [Pubmed]

Georgellis D., Kwon O., Lin EC. Amplification of signaling activity of the arc two-component system of Escherichia coli by anaerobic metabolites. An in vitro study with different protein modules. J Biol Chem. 274(50):35950-4 (1999). [Pubmed]

Georgellis D., Kwon O., Lin EC. Quinones as the redox signal for the arc two-component system of bacteria. Science. 292(5525):2314-6 (2001). [Pubmed]

Malpica R., Franco B., Rodriguez C., Kwon O., Georgellis D. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci U S A. 101(36):13318-23 (2004). [Pubmed]

Georgellis D., Kwon O., De Wulf P., Lin EC. Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J Biol Chem. 273(49):32864-9 (1998). [Pubmed]

Pena-Sandoval GR., Kwon O., Georgellis D. Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo. J Bacteriol. 187(9):3267-72 (2005). [Pubmed]

Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner BL., Mori H., Mizuno T. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol. 46(1):281-91 (2002). [Pubmed]

Kato Y., Sugiura M., Mizuno T., Aiba H. Effect of the arcA mutation on the expression of flagella genes in Escherichia coli. Biosci Biotechnol Biochem. 71(1):77-83 (2007). [Pubmed]

Mizuno T. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res. 4(2):161-8 (1997). [Pubmed]

Toro-Roman A., Mack TR., Stock AM. Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face. J Mol Biol. 349(1):11-26 (2005). [Pubmed]

Favorov AV., Gelfand MS., Gerasimova AV., Ravcheev DA., Mironov AA., Makeev VJ. A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics. 21(10):2240-5 (2005). [Pubmed]

McGuire AM., De Wulf P., Church GM., Lin EC. A weight matrix for binding recognition by the redox-response regulator ArcA-P of Escherichia coli. Mol Microbiol. 32(1):219-21 (1999). [Pubmed]

Cho BK., Knight EM., Palsson BO. Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. Microbiology. 152(Pt 8):2207-19 (2006). [Pubmed]

Jeong JY., Kim YJ., Cho N., Shin D., Nam TW., Ryu S., Seok YJ. Expression of ptsG Encoding the Major Glucose Transporter Is Regulated by ArcA in Escherichia coli. J Biol Chem. 279(37):38513-8 (2004). [Pubmed]

Sawers G., Suppmann B. Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins. J Bacteriol. 174(11):3474-8 (1992). [Pubmed]
Related annotations: PaperBLAST

Disclaimer and license

These data are available AS IS and at your own risk. The EEAD/CSIC do not give any representation or warranty nor assume any liability or responsibility for the data nor the results posted (whether as to their accuracy, completeness, quality or otherwise). Access to these data is available free of charge for ordinary use in the course of research. Downloaded data have CC-BY-NC-SA license. FootprintDB is also available at RSAT::Plants, part of the INB/ELIXIR-ES resources portfolio.