DNA Binding Motif

Accessions: SigE_2 (DBTBS 1.0)
Names: SigE_2
Organisms: Bacillus subtilis
Libraries: DBTBS 1.0 1
1 Sierro N, Makita Y, de Hoon M, Nakai K. DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic acids research 36:D93-6 (2008). [Pubmed]
Length: 8
Consensus: CATACRhT
Weblogo:
PSSM: P0 A C G T
01 0.17 0.76 0 0.07 C
02 0.88 0.06 0.06 0 A
03 0.01 0 0.02 0.97 T
04 0.99 0 0 0.01 A
05 0 0.77 0.02 0.20 C
06 0.70 0 0.30 0 R
07 0.33 0.37 0 0.30 h
08 0.16 0 0.01 0.83 T
Binding TFs: SigE (Helix-turn-helix, Sigma-70 region 2 , Sigma-70, region 4)
Binding Sites: asnO_1
bofA_1
cotE_1
cotJA_1
ctaA_4
cwlD
cwlJ
dacB
gerM_1
glgB
mmgA_2
nucB
phoB_4
phoP_10
prkA
safA
spoIID_1
spoIIIAA_1
spoIIIAG
spoIIM_1
spoIIP_1
spoIVA_1
spoIVA_2
spoIVCA_1
spoIVCB_3
spoIVFA_1
spoVB_1
spoVD_1
spoVE_1
spoVE_2
spoVID
spoVK_1
spoVM_1
spoVR
usd
yaaH
yabP_1
ybaN_1
ycgF_1
ydcA
ydcC
yfhS
yfnE_1
yhaX
yhbH_1
yhcO_1
yitC_1
yjbX
yjcA
yjmC
yknT
ykvI
ykvU_1
ylbJ_1
yngJ
yoaW_1
ypjB_1
ypqA_1
yqfC_1
yqfZ_1
yteV
ytrH
ytvI
ytxC
yunB
yuzC
ywdL
yxjC_2
yyaD
yybI
Publications: Yoshida K, Fujita Y, Ehrlich S.D. Three asparagine synthetase genes of Bacillus subtilis. Journal of bacteriology 181:6081-91 (1999). [Pubmed]

Ricca E, Cutting S, Losick R. Characterization of bofA, a gene involved in intercompartmental regulation of pro-sigma K processing during sporulation in Bacillus subtilis. Journal of bacteriology 174:3177-84 (1992). [Pubmed]

Ireton K, Grossman A.D. Interactions among mutations that cause altered timing of gene expression during sporulation in Bacillus subtilis. Journal of bacteriology 174:3185-95 (1992). [Pubmed]

Eichenberger P, Fujita M, Jensen S.T, Conlon E.M, Rudner D.Z, Wang S.T, Ferguson C, Haga K, Sato T, Liu J.S, Losick R. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS biology 2:e328 (2004). [Pubmed]

Zheng L.B, Losick R. Cascade regulation of spore coat gene expression in Bacillus subtilis. Journal of molecular biology 212:645-60 (1990). [Pubmed]

Henriques A.O, Beall B.W, Roland K, Moran C.P. Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. Journal of bacteriology 177:3394-406 (1995). [Pubmed]

Kuwana R, Kasahara Y, Fujibayashi M, Takamatsu H, Ogasawara N, Watabe K. Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology (Reading, England) 148:3971-82 (2002). [Pubmed]

Rong S, Rosenkrantz M.S, Sonenshein A.L. Transcriptional control of the Bacillus subtilis spoIID gene. Journal of bacteriology 165:771-9 (1986). [Pubmed]

Paul S, Zhang X, Hulett F.M. Two ResD-controlled promoters regulate ctaA expression in Bacillus subtilis. Journal of bacteriology 183:3237-46 (2001). [Pubmed]

Mueller J.P, Taber H.W. Structure and expression of the cytochrome aa3 regulatory gene ctaA of Bacillus subtilis. Journal of bacteriology 171:4979-86 (1989). [Pubmed]

Sekiguchi J, Akeo K, Yamamoto H, Khasanov F.K, Alonso J.C, Kuroda A. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. . Journal of bacteriology 177:5582-9 (1995). [Pubmed]

Ishikawa S, Yamane K, Sekiguchi J. Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. Journal of bacteriology 180:1375-80 (1998). [Pubmed]

Simpson E.B, Hancock T.W, Buchanan C.E. Transcriptional control of dacB, which encodes a major sporulation-specific penicillin-binding protein. Journal of bacteriology 176:7767-9 (1994). [Pubmed]

Buchanan C.E, Ling M.L. Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. Journal of bacteriology 174:1717-25 (1992). [Pubmed]

Yamamoto H, Mori M, Sekiguchi J. Transcription of genes near the sspE locus of the Bacillus subtilis genome. Microbiology (Reading, England) 145 ( Pt 8):2171-80 (1999). [Pubmed]

Eichenberger P, Jensen S.T, Conlon E.M, van Ooij C, Silvaggi J, González-Pastor J.E, Fujita M, Ben-Yehuda S, Stragier P, Liu J.S, Losick R. The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. Journal of molecular biology 327:945-72 (2003). [Pubmed]

Hay R.E, Tatti K.M, Vold B.S, Green C.J, Moran C.P. Promoter used by sigma-29 RNA polymerase from Bacillus subtilis. Gene 48:301-6 (1986). [Pubmed]

Kiel J.A, Boels J.M, Beldman G, Venema G. Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Molecular microbiology 11:203-18 (1994). [Pubmed]

Bryan E.M, Beall B.W, Moran C.P. A sigma E dependent operon subject to catabolite repression during sporulation in Bacillus subtilis. Journal of bacteriology 178:4778-86 (1996). [Pubmed]

van Sinderen D, Kiewiet R, Venema G. Differential expression of two closely related deoxyribonuclease genes, nucA and nucB, in Bacillus subtilis. Molecular microbiology 15:213-23 (1995). [Pubmed]

Abdel-Fattah W.R, Chen Y, Eldakak A, Hulett F.M. Bacillus subtilis phosphorylated PhoP: direct activation of the E(sigma)A- and repression of the E(sigma)E-responsive phoB-PS+V promoters during pho response. Journal of bacteriology 187:5166-78 (2005). [Pubmed]

Chesnut R.S, Bookstein C, Hulett F.M. Separate promoters direct expression of phoAIII, a member of the Bacillus subtilis alkaline phosphatase multigene family, during phosphate starvation and sporulation. Molecular microbiology 5:2181-90 (1991). [Pubmed]

Paul S, Birkey S, Liu W, Hulett F.M. Autoinduction of Bacillus subtilis phoPR operon transcription results from enhanced transcription from EsigmaA- and EsigmaE-responsive promoters by phosphorylated PhoP. Journal of bacteriology 186:4262-75 (2004). [Pubmed]

Takamatsu H, Kodama T, Nakayama T, Watabe K. Characterization of the yrbA gene of Bacillus subtilis, involved in resistance and germination of spores. Journal of bacteriology 181:4986-94 (1999). [Pubmed]

Illing N, Errington J. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the sigma E form of RNA polymerase. Molecular microbiology 5:1927-40 (1991). [Pubmed]

Smith K, Youngman P. Evidence that the spoIIM gene of Bacillus subtilis is transcribed by RNA polymerase associated with sigma E. Journal of bacteriology 175:3618-27 (1993). [Pubmed]

Frandsen N, Stragier P. Identification and characterization of the Bacillus subtilis spoIIP locus. Journal of bacteriology 177:716-22 (1995). [Pubmed]

Roels S, Driks A, Losick R. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. Journal of bacteriology 174:575-85 (1992). [Pubmed]

Sato T, Harada K, Ohta Y, Kobayashi Y. Expression of the Bacillus subtilis spoIVCA gene, which encodes a site-specific recombinase, depends on the spoIIGB product. Journal of bacteriology 176:935-7 (1994). [Pubmed]

Kunkel B, Sandman K, Panzer S, Youngman P, Losick R. The promoter for a sporulation gene in the spoIVC locus of Bacillus subtilis and its use in studies of temporal and spatial control of gene expression. Journal of bacteriology 170:3513-22 (1988). [Pubmed]

Cutting S, Roels S, Losick R. Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. Journal of molecular biology 221:1237-56 (1991). [Pubmed]

Popham D.L, Stragier P. Cloning, characterization, and expression of the spoVB gene of Bacillus subtilis. Journal of bacteriology 173:7942-9 (1991). [Pubmed]

Daniel R.A, Drake S, Buchanan C.E, Scholle R, Errington J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. Journal of molecular biology 235:209-20 (1994). [Pubmed]

Theeragool G, Miyao A, Yamada K, Sato T, Kobayashi Y. In vivo expression of the Bacillus subtilis spoVE gene. Journal of bacteriology 175:4071-80 (1993). [Pubmed]

Miyao A, Theeragool G, Takeuchi M, Kobayashi Y. Bacillus subtilis spoVE gene is transcribed by sigma E-associated RNA polymerase. Journal of bacteriology 175:4081-6 (1993). [Pubmed]

Beall B, Driks A, Losick R, Moran C.P. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. Journal of bacteriology 175:1705-16 (1993). [Pubmed]

Errington J, Wootten L, Dunkerley J.C, Foulger D. Differential gene expression during sporulation in Bacillus subtilis: regulation of the spoVJ gene. Molecular microbiology 3:1053-60 (1989). [Pubmed]

Foulger D, Errington J. Sequential activation of dual promoters by different sigma factors maintains spoVJ expression during successive developmental stages of Bacillus subtilis. Molecular microbiology 5:1363-73 (1991). [Pubmed]

Levin P.A, Fan N, Ricca E, Driks A, Losick R, Cutting S. An unusually small gene required for sporulation by Bacillus subtilis. Molecular microbiology 9:761-71 (1993). [Pubmed]

Beall B, Moran C.P. Cloning and characterization of spoVR, a gene from Bacillus subtilis involved in spore cortex formation. Journal of bacteriology 176:2003-12 (1994). [Pubmed]

Kunkel B, Kroos L, Poth H, Youngman P, Losick R. Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis. Genes & development 3:1735-44 (1989). [Pubmed]

Tatti K.M, Jones C.H, Moran C.P. Genetic evidence for interaction of sigma E with the spoIIID promoter in Bacillus subtilis. Journal of bacteriology 173:7828-33 (1991). [Pubmed]

Decatur A, McMurry M.T, Kunkel B.N, Losick R. Translation of the mRNA for the sporulation gene spoIIID of Bacillus subtilis is dependent upon translation of a small upstream open reading frame. Journal of bacteriology 179:1324-8 (1997). [Pubmed]

Kodama T, Takamatsu H, Asai K, Kobayashi K, Ogasawara N, Watabe K. The Bacillus subtilis yaaH gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. Journal of bacteriology 181:4584-91 (1999). [Pubmed]

Kobayashi K, Ogura M, Yamaguchi H, Yoshida K, Ogasawara N, Tanaka T, Fujita Y. Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. Journal of bacteriology 183:7365-70 (2001). [Pubmed]

Asai K, Takamatsu H, Iwano M, Kodama T, Watabe K, Ogasawara N. The Bacillus subtilis yabQ gene is essential for formation of the spore cortex. Microbiology (Reading, England) 147:919-27 (2001). [Pubmed]

Feucht A, Evans L, Errington J. Identification of sporulation genes by genome-wide analysis of the sigmaE regulon of Bacillus subtilis. Microbiology (Reading, England) 149:3023-34 (2003). [Pubmed]

Kuwana R, Yamamura S, Ikejiri H, Kobayashi K, Ogasawara N, Asai K, Sadaie Y, Takamatsu H, Watabe K. Bacillus subtilis spoVIF (yjcC) gene, involved in coat assembly and spore resistance. Microbiology (Reading, England) 149:3011-21 (2003). [Pubmed]

Mekjian K.R, Bryan E.M, Beall B.W, Moran C.P. Regulation of hexuronate utilization in Bacillus subtilis. Journal of bacteriology 181:426-33 (1999). [Pubmed]

Henriques A.O, Bryan E.M, Beall B.W, Moran C.P. cse15, cse60, and csk22 are new members of mother-cell-specific sporulation regulons in Bacillus subtilis. Journal of bacteriology 179:389-98 (1997). [Pubmed]

Rather P.N, Hay R.E, Ray G.L, Haldenwang W.G, Moran C.P. Nucleotide sequences that define promoters that are used by Bacillus subtilis sigma-29 RNA polymerase. Journal of molecular biology 192:557-65 (1986). [Pubmed]

Ragkousi K, Eichenberger P, van Ooij C, Setlow P. Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. Journal of bacteriology 185:2315-29 (2003). [Pubmed]

Disclaimer and license

These data are available AS IS and at your own risk. The EEAD/CSIC do not give any representation or warranty nor assume any liability or responsibility for the data nor the results posted (whether as to their accuracy, completeness, quality or otherwise). Access to these data is available free of charge for ordinary use in the course of research. Downloaded data have CC-BY-NC-SA license. FootprintDB is also available at RSAT::Plants, part of the INB/ELIXIR-ES resources portfolio.