DNA Binding Motif

Accessions: SigA_2 (DBTBS 1.0)
Names: SigA_2
Organisms: Bacillus subtilis
Libraries: DBTBS 1.0 1
1 Sierro N, Makita Y, de Hoon M, Nakai K. DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic acids research 36:D93-6 (2008). [Pubmed]
Length: 6
Consensus: TAtAAT
Weblogo:
PSSM: P0 A C G T
01 0 0.08 0 0.92 T
02 0.95 0 0 0.05 A
03 0.08 0.24 0 0.67 t
04 0.82 0 0.14 0.04 A
05 0.74 0.22 0.04 0 A
06 0.05 0 0.01 0.94 T
Binding TFs: SigA (Sigma-70 factor, region 1.2, Sigma-70 factor, region 1.1, Sigma-70 region 3, Sigma-70 region 2 , Sigma-70, region 4)
Binding Sites: abnA_2
abrB_2
abrB_3
ackA_3
acsA_2
acuA_2
adaA_1
addB_3
ahpC_2
ald
alkA_2
alsS_1
amhX
amyE_2
ansA_1
antE
aprE_7
aprX_2
araA_4
araE_4
araR_2
arfM_2
argC_4
arsR_2
asd_1
bglC
bglP_3
bglS_3
blt_3
bmr_3
bsrB
ccdA
ccpC_3
cdd_1
cggR_2
citA_1
citB_4
citG_1
citG_2
citM_4
citR
citZ_4
clpE_6
clpE_7
clpP_2
clpX_1
codV
comA
comC_3
comEA_3
comFA_3
comGA_3
comK_6
comQ
csbA_1
cspB_2
cssR_2
cssR_3
ctaA_3
ctsR_2
cydA_3
cymR
cysH
cysK_1
dctP_2
degQ_2
degS
des_2
dhbA_2
divIB
dnaA_10
dnaJ
dppA_3
dra_3
drm_1
drm_2
ezrA_1
ezrA_2
fabHA_1
fabL_1
fabL_2
fapR_1
fbp
feuA_2
flgB_1
fnr_2
ftsA_3
ftsA_4
ftsH
fur_2
gabP_1
gabP_2
gabR_1
gabT_1
galE
gapB_2
gcaD
ggaA
glnR_3
glpD_2
glpF_3
glpQ_2
glpT_2
gltA_4
gltC_2
gltR_3
gltX
glyA_2
gntR_3
gntZ_1
groES_2
gtaB_1
guaA
guaD_2
gudB
gutB_2
gyrA
hbs_2
hbs_3
hemA_3
hemZ_1
hmp_2
hrcA_2
htpG_1
htrA_2
hutP_5
icd
ilvB_3
infC_2
iolR_3
ispA_1
kdgR_1
kinB_2
kinC_1
ldh_1
lepA
liaG
licB_2
licR
lmrA_2
lonA_1
lonA_2
lrpC_2
lysC
lytA_1
lytE_2
lytR_1
maeN_1
malA_2
mecA
med_1
med_2
menB
menE
menF
mmsA_4
mrgA_2
mta_2
mtrA
nadB_1
nadE_1
narG_2
narK_2
nasA_2
nasB_2
nfrA_1
nifS_1
nrgA_1
nusA
odhA
ogt
opuAA_1
opuAA_2
opuBA
opuE_1
pabB
pbpD
pbpF
pckA_2
pdhA
pdhC
perR_3
pgk
pheS_1
phoA_2
phoB_3
phoD_2
phoP_6
phoP_7
phoP_8
phrE_1
phrI_1
pmi
ppiB
pssA_1
pssA_2
pstS_2
pta_3
ptsG_1
ptsH
pucA_1
pucH_2
pucJ_2
purA_2
purE_2
purT
pyrG
pyrR_3
qcrA_1
rapA_2
rapB
rapC_2
rapD_1
rapG_2
rapH_4
rbsR_4
recA_6
resA_2
resD_2
rocR_2
rpmH_1
rpmH_2
rpoB
rpoE
rpsD
rrnA-16S_1
rrnA-16S_2
rrnB-16S_1
rrnB-16S_2
rrnD-16S_1
rrnD-16S_2
rrnO-16S_1
rrnO-16S_2
rsbR
sacB_3
sacP_3
sacX_4
sboA_1
scr
sda_3
sdhC
secA
sigD
sigH_2
sigM_1
sigX_1
sinI_4
sinI_5
sinR
sipS_2
speD
speE
spo0A_1
spo0A_2
spo0B
spo0E_2
spo0F_1
spoIIE_1
spoIIGA_1
spoIIIE
spoIIIJ
srfAA_5
ssuB_1
tagA_4
tagD_4
tetL
thrS_1
thrZ_1
treP_2
trnD-Asn
trnD-Leu2
trpE_1
trxA_1
tuaA_2
tyrS_1
ureA_4
uxaC_3
valS_1
veg
wapA_3
xpt_2
xsa_3
xylA_2
xynA
xynP_2
yaaA
yaaB
yaaJ
ybcO_1
ybgJ_2
yccC_1
ycdH_1
yceC_1
yciA_1
yciC_1
yczA_1
ydfJ_2
ydfK_1
ydjK_2
yfkJ_1
yflG
yfmP
yhaG_1
yhcL_1
yhcY_1
yhfL_2
yhjL_1
yjbD_2
yjcI
yklA_2
ykoL_2
ykrT
ykrU
ykrV
ykrW_1
ykrW_2
ykuF_2
ykuN_3
ykvW_2
ylaC_1
ylxM
ymaA_2
yneI
yneJ
yocH_1
ypuE
yqdB
yqxD_1
yqxD_2
yqxM_1
yrrT_1
ysiA_2
ytkD_1
ytlI_2
ytlI_3
ytmI_3
ytrA_1
yurH_2
yusL_2
yuxH_1
yvbA_1
yveK_1
yvgR_2
yvqI_2
ywbI
ywcJ_1
ywfK_2
ywjF_2
ywkA_1
ywoE_2
yxeK_1
yydF
Publications: Huang X, Helmann J.D. Identification of target promoters for the Bacillus subtilis sigma X factor using a consensus-directed search. Journal of molecular biology 279:165-73 (1998). [Pubmed]

Raposo M.P, Inácio J.M, Mota L.J, de Sá-Nogueira I. Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis. Journal of bacteriology 186:1287-96 (2004). [Pubmed]

Perego M, Spiegelman G.B, Hoch J.A. Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Molecular microbiology 2:689-99 (1988). [Pubmed]

Grundy F.J, Waters D.A, Allen S.H, Henkin T.M. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. Journal of bacteriology 175:7348-55 (1993). [Pubmed]

Grundy F.J, Turinsky A.J, Henkin T.M. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. Journal of bacteriology 176:4527-33 (1994). [Pubmed]

Morohoshi F, Hayashi K, Munkata N. Bacillus subtilis alkA gene encoding inducible 3-methyladenine DNA glycosylase is adjacent to the ada operon. Journal of bacteriology 175:6010-7 (1993). [Pubmed]

Haijema B.J, Hamoen L.W, Kooistra J, Venema G, van Sinderen D. Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Molecular microbiology 15:203-11 (1995). [Pubmed]

Antelmann H, Engelmann S, Schmid R, Hecker M. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. Journal of bacteriology 178:6571-8 (1996). [Pubmed]

Siranosian K.J, Ireton K, Grossman A.D. Alanine dehydrogenase (ald) is required for normal sporulation in Bacillus subtilis. Journal of bacteriology 175:6789-96 (1993). [Pubmed]

Renna M.C, Najimudin N, Winik L.R, Zahler S.A. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. Journal of bacteriology 175:3863-75 (1993). [Pubmed]

Reents H, Münch R, Dammeyer T, Jahn D, Härtig E. The Fnr regulon of Bacillus subtilis. Journal of bacteriology 188:1103-12 (2006). [Pubmed]

Kempf B, Bremer E. A novel amidohydrolase gene from Bacillus subtilis cloning: DNA-sequence analysis and map position of amhX. FEMS microbiology letters 141:129-37 (1996). [Pubmed]

Nicholson W.L, Park Y.K, Henkin T.M, Won M, Weickert M.J, Gaskell J.A, Chambliss G.H. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. Journal of molecular biology 198:609-18 (1987). [Pubmed]

Sun D.X, Setlow P. Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. Journal of bacteriology 173:3831-45 (1991). [Pubmed]

Wang L.F, Park S.S, Doi R.H. A novel Bacillus subtilis gene, antE, temporally regulated and convergent to and overlapping dnaE. Journal of bacteriology 181:353-6 (1999). [Pubmed]

Henner D.J, Ferrari E, Perego M, Hoch J.A. Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtilisin promoter. Journal of bacteriology 170:296-300 (1988). [Pubmed]

Ferrari E, Henner D.J, Perego M, Hoch J.A. Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants. Journal of bacteriology 170:289-95 (1988). [Pubmed]

Park S.S, Wong S.L, Wang L.F, Doi R.H. Bacillus subtilis subtilisin gene (aprE) is expressed from a sigma A (sigma 43) promoter in vitro and in vivo. Journal of bacteriology 171:2657-65 (1989). [Pubmed]

Valbuzzi A, Ferrari E, Albertini A.M. A novel member of the subtilisin-like protease family from Bacillus subtilis. Microbiology (Reading, England) 145 ( Pt 11):3121-7 (1999). [Pubmed]

Sá-Nogueira I, Nogueira T.V, Soares S, de Lencastre H. The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology (Reading, England) 143 ( Pt 3):957-69 (1997). [Pubmed]

Sá-Nogueira I, Ramos S.S. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization. Journal of bacteriology 179:7705-11 (1997). [Pubmed]

Marino M, Ramos H.C, Hoffmann T, Glaser P, Jahn D. Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD). Journal of bacteriology 183:6815-21 (2001). [Pubmed]

Cruz Ramos H, Boursier L, Moszer I, Kunst F, Danchin A, Glaser P. Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms. The EMBO journal 14:5984-94 (1995). [Pubmed]

Smith M.C, Mountain A, Baumberg S. Sequence analysis of the Bacillus subtilis argC promoter region. Gene 49:53-60 (1986). [Pubmed]

O'Reilly M, Woodson K, Dowds B.C, Devine K.M. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. Molecular microbiology 11:87-98 (1994). [Pubmed]

Sato T, Kobayashi Y. The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. Journal of bacteriology 180:1655-61 (1998). [Pubmed]

Chen N.Y, Jiang S.Q, Klein D.A, Paulus H. Organization and nucleotide sequence of the Bacillus subtilis diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. The Journal of biological chemistry 268:9448-65 (1993). [Pubmed]

Robson L.M, Chambliss G.H. Endo-beta-1,4-glucanase gene of Bacillus subtilis DLG. Journal of bacteriology 169:2017-25 (1987). [Pubmed]

Le Coq D, Lindner C, Krüger S, Steinmetz M, Stülke J. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. Journal of bacteriology 177:1527-35 (1995). [Pubmed]

Steinmetz M, Aymerich S. [Genetic analysis of sacR, a cis-regulator of levan-saccharase synthesis of Bacillus subtilis]. Annales de l'Institut Pasteur. Microbiologie 137A:3-14 (). [Pubmed]

Schnetz K, Stülke J, Gertz S, Krüger S, Krieg M, Hecker M, Rak B. LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. Journal of bacteriology 178:1971-9 (1996). [Pubmed]

Baranova N.N, Danchin A, Neyfakh A.A. Mta, a global MerR-type regulator of the Bacillus subtilis multidrug-efflux transporters. Molecular microbiology 31:1549-59 (1999). [Pubmed]

Ando Y, Asari S, Suzuma S, Yamane K, Nakamura K. Expression of a small RNA, BS203 RNA, from the yocI-yocJ intergenic region of Bacillus subtilis genome. FEMS microbiology letters 207:29-33 (2002). [Pubmed]

Schiött T, Hederstedt L. Efficient spore synthesis in Bacillus subtilis depends on the CcdA protein. Journal of bacteriology 182:2845-54 (2000). [Pubmed]

Kim H.J, Jourlin-Castelli C, Kim S.I, Sonenshein A.L. Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC. Molecular microbiology 43:399-410 (2002). [Pubmed]

Wang P.Z, Doi R.H. Overlapping promoters transcribed by bacillus subtilis sigma 55 and sigma 37 RNA polymerase holoenzymes during growth and stationary phases. The Journal of biological chemistry 259:8619-25 (1984). [Pubmed]

Song B.H, Neuhard J. Chromosomal location, cloning and nucleotide sequence of the Bacillus subtilis cdd gene encoding cytidine/deoxycytidine deaminase. Molecular & general genetics : MGG 216:462-8 (1989). [Pubmed]

Ludwig H, Homuth G, Schmalisch M, Dyka F.M, Hecker M, Stülke J. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Molecular microbiology 41:409-22 (2001). [Pubmed]

Jin S, Sonenshein A.L. Transcriptional regulation of Bacillus subtilis citrate synthase genes. Journal of bacteriology 176:4680-90 (1994). [Pubmed]

Whipple F.W, Sonenshein A.L. Mechanism of initiation of transcription by Bacillus subtilis RNA polymerase at several promoters. Journal of molecular biology 223:399-414 (1992). [Pubmed]

Feavers I.M, Price V, Moir A. The regulation of the fumarase (citG) gene of Bacillus subtilis 168. Molecular & general genetics : MGG 211:465-71 (1988). [Pubmed]

Tatti K.M, Carter H.L, Moir A, Moran C.P. Sigma H-directed transcription of citG in Bacillus subtilis. Journal of bacteriology 171:5928-32 (1989). [Pubmed]

Price V.A, Feavers I.M, Moir A. Role of sigma H in expression of the fumarase gene (citG) in vegetative cells of Bacillus subtilis 168. Journal of bacteriology 171:5933-9 (1989). [Pubmed]

Yamamoto H, Murata M, Sekiguchi J. The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis. Molecular microbiology 37:898-912 (2000). [Pubmed]

Derré I, Rapoport G, Devine K, Rose M, Msadek T. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Molecular microbiology 32:581-93 (1999). [Pubmed]

Gerth U, Krüger E, Derré I, Msadek T, Hecker M. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Molecular microbiology 28:787-802 (1998). [Pubmed]

Gerth U, Wipat A, Harwood C.R, Carter N, Emmerson P.T, Hecker M. Sequence and transcriptional analysis of clpX, a class-III heat-shock gene of Bacillus subtilis. Gene 181:77-83 (1996). [Pubmed]

Slack F.J, Serror P, Joyce E, Sonenshein A.L. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Molecular microbiology 15:689-702 (1995). [Pubmed]

Weinrauch Y, Guillen N, Dubnau D.A. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. Journal of bacteriology 171:5362-75 (1989). [Pubmed]

van Sinderen D, ten Berge A, Hayema B.J, Hamoen L, Venema G. Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Molecular microbiology 11:695-703 (1994). [Pubmed]

Mohan S, Dubnau D. Transcriptional regulation of comC: evidence for a competence-specific transcription factor in Bacillus subtilis. Journal of bacteriology 172:4064-71 (1990). [Pubmed]

Hahn J, Inamine G, Kozlov Y, Dubnau D. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Molecular microbiology 10:99-111 (1993). [Pubmed]

Londoño-Vallejo J.A, Dubnau D. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Molecular microbiology 9:119-31 (1993). [Pubmed]

Kong L, Siranosian K.J, Grossman A.D, Dubnau D. Sequence and properties of mecA, a negative regulator of genetic competence in Bacillus subtilis. Molecular microbiology 9:365-73 (1993). [Pubmed]

Albano M, Breitling R, Dubnau D.A. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. Journal of bacteriology 171:5386-404 (1989). [Pubmed]

Weinrauch Y, Msadek T, Kunst F, Dubnau D. Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. Journal of bacteriology 173:5685-93 (1991). [Pubmed]

Boylan S.A, Thomas M.D, Price C.W. Genetic method to identify regulons controlled by nonessential elements: isolation of a gene dependent on alternate transcription factor sigma B of Bacillus subtilis. Journal of bacteriology 173:7856-66 (1991). [Pubmed]

Willimsky G, Bang H, Fischer G, Marahiel M.A. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. Journal of bacteriology 174:6326-35 (1992). [Pubmed]

Darmon E, Noone D, Masson A, Bron S, Kuipers O.P, Devine K.M, van Dijl J.M. A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. Journal of bacteriology 184:5661-71 (2002). [Pubmed]

Paul S, Zhang X, Hulett F.M. Two ResD-controlled promoters regulate ctaA expression in Bacillus subtilis. Journal of bacteriology 183:3237-46 (2001). [Pubmed]

Sun G, Sharkova E, Chesnut R, Birkey S, Duggan M.F, Sorokin A, Pujic P, Ehrlich S.D, Hulett F.M. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. Journal of bacteriology 178:1374-85 (1996). [Pubmed]

Krüger E, Msadek T, Hecker M. Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Molecular microbiology 20:713-23 (1996). [Pubmed]

Winstedt L, Yoshida K, Fujita Y, von Wachenfeldt C. Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. Journal of bacteriology 180:6571-80 (1998). [Pubmed]

Choi S.Y, Reyes D, Leelakriangsak M, Zuber P. The global regulator Spx functions in the control of organosulfur metabolism in Bacillus subtilis. Journal of bacteriology 188:5741-51 (2006). [Pubmed]

Mansilla M.C, Albanesi D, de Mendoza D. Transcriptional control of the sulfur-regulated cysH operon, containing genes involved in L-cysteine biosynthesis in Bacillus subtilis. Journal of bacteriology 182:5885-92 (2000). [Pubmed]

van der Ploeg J.R, Barone M, Leisinger T. Functional analysis of the Bacillus subtilis cysK and cysJI genes. FEMS microbiology letters 201:29-35 (2001). [Pubmed]

Even S, Burguière P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I. Global control of cysteine metabolism by CymR in Bacillus subtilis. Journal of bacteriology 188:2184-97 (2006). [Pubmed]

Asai K, Baik S.H, Kasahara Y, Moriya S, Ogasawara N. Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. Microbiology (Reading, England) 146 ( Pt 2):263-71 (2000). [Pubmed]

Yang M, Ferrari E, Chen E, Henner D.J. Identification of the pleiotropic sacQ gene of Bacillus subtilis. Journal of bacteriology 166:113-9 (1986). [Pubmed]

Msadek T, Kunst F, Henner D, Klier A, Rapoport G, Dedonder R. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. Journal of bacteriology 172:824-34 (1990). [Pubmed]

Aguilar P.S, Lopez P, de Mendoza D. Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. Journal of bacteriology 181:7028-33 (1999). [Pubmed]

Baichoo N, Wang T, Ye R, Helmann J.D. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Molecular microbiology 45:1613-29 (2002). [Pubmed]

Rowland B.M, Taber H.W. Duplicate isochorismate synthase genes of Bacillus subtilis: regulation and involvement in the biosyntheses of menaquinone and 2,3-dihydroxybenzoate. Journal of bacteriology 178:854-61 (1996). [Pubmed]

Harry E.J, Rowland S.L, Malo M.S, Wake R.G. Expression of divIB of Bacillus subtilis during vegetative growth. Journal of bacteriology 176:1172-9 (1994). [Pubmed]

Cao M, Helmann J.D. The Bacillus subtilis extracytoplasmic-function sigmaX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. Journal of bacteriology 186:1136-46 (2004). [Pubmed]

Moriya S, Fukuoka T, Ogasawara N, Yoshikawa H. Regulation of initiation of the chromosomal replication by DnaA-boxes in the origin region of the Bacillus subtilis chromosome. The EMBO journal 7:2911-7 (1988). [Pubmed]

Ogasawara N, Moriya S, Yoshikawa H. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. IV. Transcription of the oriC region and expression of DNA gyrase genes and other open reading frames. Nucleic acids research 13:2267-79 (1985). [Pubmed]

Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W. The dnaK operon of Bacillus subtilis is heptacistronic. Journal of bacteriology 179:1153-64 (1997). [Pubmed]

Slack F.J, Mueller J.P, Strauch M.A, Mathiopoulos C, Sonenshein A.L. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Molecular microbiology 5:1915-25 (1991). [Pubmed]

Saxild H.H, Andersen L.N, Hammer K. Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. Journal of bacteriology 178:424-34 (1996). [Pubmed]

Schuch R, Garibian A, Saxild H.H, Piggot P.J, Nygaard P. Nucleosides as a carbon source in Bacillus subtilis: characterization of the drm-pupG operon. Microbiology (Reading, England) 145 ( Pt 10):2957-66 (1999). [Pubmed]

Chung K.M, Hsu H.H, Govindan S, Chang B.Y. Transcription regulation of ezrA and its effect on cell division of Bacillus subtilis. Journal of bacteriology 186:5926-32 (2004). [Pubmed]

Schujman G.E, Paoletti L, Grossman A.D, de Mendoza D. FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Developmental cell 4:663-72 (2003). [Pubmed]

Yamamoto H, Mori M, Sekiguchi J. Transcription of genes near the sspE locus of the Bacillus subtilis genome. Microbiology (Reading, England) 145 ( Pt 8):2171-80 (1999). [Pubmed]

Schujman G.E, Guerin M, Buschiazzo A, Schaeffer F, Llarrull L.I, Reh G, Vila A.J, Alzari P.M, de Mendoza D. Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. The EMBO journal 25:4074-83 (2006). [Pubmed]

Fujita Y, Yoshida K, Miwa Y, Yanai N, Nagakawa E, Kasahara Y. Identification and expression of the Bacillus subtilis fructose-1, 6-bisphosphatase gene (fbp). Journal of bacteriology 180:4309-13 (1998). [Pubmed]

Fuangthong M, Helmann J.D. Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. Journal of bacteriology 185:6348-57 (2003). [Pubmed]

West J.T, Estacio W, Márquez-Magaña L. Relative roles of the fla/che P(A), P(D-3), and P(sigD) promoters in regulating motility and sigD expression in Bacillus subtilis. Journal of bacteriology 182:4841-8 (2000). [Pubmed]

Estacio W, Anna-Arriola S.S, Adedipe M, Márquez-Magaña L.M. Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis. Journal of bacteriology 180:3548-55 (1998). [Pubmed]

Gonzy-Tréboul G, Karmazyn-Campelli C, Stragier P. Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon. Journal of molecular biology 224:967-79 (1992). [Pubmed]

Fukuchi K, Kasahara Y, Asai K, Kobayashi K, Moriya S, Ogasawara N. The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology (Reading, England) 146 ( Pt 7):1573-83 (2000). [Pubmed]

Howell A, Dubrac S, Andersen K.K, Noone D, Fert J, Msadek T, Devine K. Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Molecular microbiology 49:1639-55 (2003). [Pubmed]

Deuerling E, Paeslack B, Schumann W. The ftsH gene of Bacillus subtilis is transiently induced after osmotic and temperature upshift. Journal of bacteriology 177:4105-12 (1995). [Pubmed]

Fuangthong M, Herbig A.F, Bsat N, Helmann J.D. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. Journal of bacteriology 184:3276-86 (2002). [Pubmed]

Ferson A.E, Wray L.V, Fisher S.H. Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability. Molecular microbiology 22:693-701 (1996). [Pubmed]

Belitsky B.R, Sonenshein A.L. GabR, a member of a novel protein family, regulates the utilization of gamma-aminobutyrate in Bacillus subtilis. Molecular microbiology 45:569-83 (2002). [Pubmed]

Krispin O, Allmansberger R. The Bacillus subtilis galE gene is essential in the presence of glucose and galactose. Journal of bacteriology 180:2265-70 (1998). [Pubmed]

Servant P, Le Coq D, Aymerich S. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Molecular microbiology 55:1435-51 (2005). [Pubmed]

Moran C.P, Lang N, LeGrice S.F, Lee G, Stephens M, Sonenshein A.L, Pero J, Losick R. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Molecular & general genetics : MGG 186:339-46 (1982). [Pubmed]

Freymond P.P, Lazarevic V, Soldo B, Karamata D. Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: its biosynthetic pathway and mode of attachment to peptidoglycan. Microbiology (Reading, England) 152:1709-18 (2006). [Pubmed]

Strauch M.A, Aronson A.I, Brown S.W, Schreier H.J, Sonenhein A.L. Sequence of the Bacillus subtilis glutamine synthetase gene region. Gene 71:257-65 (1988). [Pubmed]

Holmberg C, Rutberg B. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination. Molecular microbiology 5:2891-900 (1991). [Pubmed]

Holmberg C, Beijer L, Rutberg B, Rutberg L. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). Journal of general microbiology 136:2367-75 (1990). [Pubmed]

Antelmann H, Scharf C, Hecker M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. Journal of bacteriology 182:4478-90 (2000). [Pubmed]

Allenby N.E, O'Connor N, Prágai Z, Ward A.C, Wipat A, Harwood C.R. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. Journal of bacteriology 187:8063-80 (2005). [Pubmed]

Nilsson R.P, Beijer L, Rutberg B. The glpT and glpQ genes of the glycerol regulon in Bacillus subtilis. Microbiology (Reading, England) 140 ( Pt 4):723-30 (1994). [Pubmed]

Bohannon D.E, Sonenshein A.L. Positive regulation of glutamate biosynthesis in Bacillus subtilis. Journal of bacteriology 171:4718-27 (1989). [Pubmed]

Belitsky B.R, Sonenshein A.L. Altered transcription activation specificity of a mutant form of Bacillus subtilis GltR, a LysR family member. Journal of bacteriology 179:1035-43 (1997). [Pubmed]

Gagnon Y, Breton R, Putzer H, Pelchat M, Grunberg-Manago M, Lapointe J. Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. The Journal of biological chemistry 269:7473-82 (1994). [Pubmed]

Saxild H.H, Brunstedt K, Nielsen K.I, Jarmer H, Nygaard P. Definition of the Bacillus subtilis PurR operator using genetic and bioinformatic tools and expansion of the PurR regulon with glyA, guaC, pbuG, xpt-pbuX, yqhZ-folD, and pbuO. Journal of bacteriology 183:6175-83 (2001). [Pubmed]

Fujita Y, Fujita T. Identification and nucleotide sequence of the promoter region of the Bacillus subtilis gluconate operon. Nucleic acids research 14:1237-52 (1986). [Pubmed]

Li M, Wong S.L. Cloning and characterization of the groESL operon from Bacillus subtilis. Journal of bacteriology 174:3981-92 (1992). [Pubmed]

Mueller J.P, Bukusoglu G, Sonenshein A.L. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system. Journal of bacteriology 174:4361-73 (1992). [Pubmed]

Varón D, Boylan S.A, Okamoto K, Price C.W. Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor sigma B. Journal of bacteriology 175:3964-71 (1993). [Pubmed]

Mäntsälä P, Zalkin H. Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP. Journal of bacteriology 174:1883-90 (1992). [Pubmed]

Beier L, Nygaard P, Jarmer H, Saxild H.H. Transcription analysis of the Bacillus subtilis PucR regulon and identification of a cis-acting sequence required for PucR-regulated expression of genes involved in purine catabolism. Journal of bacteriology 184:3232-41 (2002). [Pubmed]

Nygaard P, Bested S.M, Andersen K.A, Saxild H.H. Bacillus subtilis guanine deaminase is encoded by the yknA gene and is induced during growth with purines as the nitrogen source. Microbiology (Reading, England) 146 Pt 12:3061-9 (2000). [Pubmed]

Belitsky B.R, Sonenshein A.L. Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. Journal of bacteriology 180:6298-305 (1998). [Pubmed]

Ye R, Wong S.L. Transcriptional regulation of the Bacillus subtilis glucitol dehydrogenase gene. Journal of bacteriology 176:3314-20 (1994). [Pubmed]

Micka B, Groch N, Heinemann U, Marahiel M.A. Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA-binding protein HBsu. Journal of bacteriology 173:3191-8 (1991). [Pubmed]

Micka B, Marahiel M.A. The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis. Biochimie 74:641-50 (). [Pubmed]

Fernández S, Alonso J.C. Bacillus subtilis sequence-independent DNA-binding and DNA-bending protein Hbsu negatively controls its own synthesis. Gene 231:187-93 (1999). [Pubmed]

Hansson M, Rutberg L, Schröder I, Hederstedt L. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. Journal of bacteriology 173:2590-9 (1991). [Pubmed]

Homuth G, Rompf A, Schumann W, Jahn D. Transcriptional control of Bacillus subtilis hemN and hemZ. Journal of bacteriology 181:5922-9 (1999). [Pubmed]

LaCelle M, Kumano M, Kurita K, Yamane K, Zuber P, Nakano M.M. Oxygen-controlled regulation of the flavohemoglobin gene in Bacillus subtilis. Journal of bacteriology 178:3803-8 (1996). [Pubmed]

Nakano M.M, Geng H, Nakano S, Kobayashi K. The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression. Journal of bacteriology 188:5878-87 (2006). [Pubmed]

Wetzstein M, Völker U, Dedio J, Löbau S, Zuber U, Schiesswohl M, Herget C, Hecker M, Schumann W. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. Journal of bacteriology 174:3300-10 (1992). [Pubmed]

Schulz A, Schwab S, Homuth G, Versteeg S, Schumann W. The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control. Journal of bacteriology 179:3103-9 (1997). [Pubmed]

Noone D, Howell A, Devine K.M. Expression of ykdA, encoding a Bacillus subtilis homologue of HtrA, is heat shock inducible and negatively autoregulated. Journal of bacteriology 182:1592-9 (2000). [Pubmed]

Wray L.V, Fisher S.H. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. Journal of bacteriology 176:5466-73 (1994). [Pubmed]

Grandoni J.A, Zahler S.A, Calvo J.M. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. Journal of bacteriology 174:3212-9 (1992). [Pubmed]

Choonee N, Even S, Zig L, Putzer H. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Nucleic acids research 35:1578-88 (2007). [Pubmed]

Yoshida K.I, Aoyama D, Ishio I, Shibayama T, Fujita Y. Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. Journal of bacteriology 179:4591-8 (1997). [Pubmed]

Koide Y, Nakamura A, Uozumi T, Beppu T. Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis. Journal of bacteriology 167:110-6 (1986). [Pubmed]

Pujic P, Dervyn R, Sorokin A, Ehrlich S.D. The kdgRKAT operon of Bacillus subtilis: detection of the transcript and regulation by the kdgR and ccpA genes. Microbiology (Reading, England) 144 ( Pt 11):3111-8 (1998). [Pubmed]

Predich M, Nair G, Smith I. Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing sigma H. Journal of bacteriology 174:2771-8 (1992). [Pubmed]

Trach K.A, Hoch J.A. Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Molecular microbiology 8:69-79 (1993). [Pubmed]

LeDeaux J.R, Grossman A.D. Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. Journal of bacteriology 177:166-75 (1995). [Pubmed]

Kobayashi K, Shoji K, Shimizu T, Nakano K, Sato T, Kobayashi Y. Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. Journal of bacteriology 177:176-82 (1995). [Pubmed]

Cruz Ramos H, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, Glaser P, Jahn D. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. Journal of bacteriology 182:3072-80 (2000). [Pubmed]

Hippler B, Homuth G, Hoffmann T, Hungerer C, Schumann W, Jahn D. Characterization of Bacillus subtilis hemN. Journal of bacteriology 179:7181-5 (1997). [Pubmed]

Jordan S, Junker A, Helmann J.D, Mascher T. Regulation of LiaRS-dependent gene expression in bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. Journal of bacteriology 188:5153-66 (2006). [Pubmed]

Tobisch S, Glaser P, Krüger S, Hecker M. Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis. Journal of bacteriology 179:496-506 (1997). [Pubmed]

Kumano M, Fujita M, Nakamura K, Murata M, Ohki R, Yamane K. Lincomycin resistance mutations in two regions immediately downstream of the -10 region of lmr promoter cause overexpression of a putative multidrug efflux pump in Bacillus subtilis mutants. Antimicrobial agents and chemotherapy 47:432-5 (2003). [Pubmed]

Riethdorf S, Völker U, Gerth U, Winkler A, Engelmann S, Hecker M. Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene. Journal of bacteriology 176:6518-27 (1994). [Pubmed]

Beloin C, Exley R, Mahé A.L, Zouine M, Cubasch S, Le Hégarat F. Characterization of LrpC DNA-binding properties and regulation of Bacillus subtilis lrpC gene expression. Journal of bacteriology 182:4414-24 (2000). [Pubmed]

Chen N.Y, Hu F.M, Paulus H. Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control regions. The Journal of biological chemistry 262:8787-98 (1987). [Pubmed]

Lazarevic V, Margot P, Soldo B, Karamata D. Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. Journal of general microbiology 138:1949-61 (1992). [Pubmed]

Margot P, Mauël C, Karamata D. The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Molecular microbiology 12:535-45 (1994). [Pubmed]

Ishikawa S, Hara Y, Ohnishi R, Sekiguchi J. Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. Journal of bacteriology 180:2549-55 (1998). [Pubmed]

Tanaka K, Kobayashi K, Ogasawara N. The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium. Microbiology (Reading, England) 149:2317-29 (2003). [Pubmed]

Yamamoto H, Serizawa M, Thompson J, Sekiguchi J. Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. Journal of bacteriology 183:5110-21 (2001). [Pubmed]

Ogura M, Ohshiro Y, Hirao S, Tanaka T. A new Bacillus subtilis gene, med, encodes a positive regulator of comK. Journal of bacteriology 179:6244-53 (1997). [Pubmed]

Driscoll J.R, Taber H.W. Sequence organization and regulation of the Bacillus subtilis menBE operon. Journal of bacteriology 174:5063-71 (1992). [Pubmed]

Qin X, Taber H.W. Transcriptional regulation of the Bacillus subtilis menp1 promoter. Journal of bacteriology 178:705-13 (1996). [Pubmed]

Gollnick P, Ishino S, Kuroda M.I, Henner D.J, Yanofsky C. The mtr locus is a two-gene operon required for transcription attenuation in the trp operon of Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 87:8726-30 (1990). [Pubmed]

Sun D, Setlow P. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis nadB gene and a nifS-like gene, both of which are essential for NAD biosynthesis. Journal of bacteriology 175:1423-32 (1993). [Pubmed]

Antelmann H, Schmid R, Hecker M. The NAD synthetase NadE (OutB) of Bacillus subtilis is a sigma B-dependent general stress protein. FEMS microbiology letters 153:405-9 (1997). [Pubmed]

Nakano M.M, Yang F, Hardin P, Zuber P. Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis. Journal of bacteriology 177:573-9 (1995). [Pubmed]

Moch C, Schrögel O, Allmansberger R. Transcription of the nfrA-ywcH operon from Bacillus subtilis is specifically induced in response to heat. Journal of bacteriology 182:4384-93 (2000). [Pubmed]

Wray L.V, Atkinson M.R, Fisher S.H. The nitrogen-regulated Bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glnB-encoded PII protein. Journal of bacteriology 176:108-14 (1994). [Pubmed]

Shazand K, Tucker J, Grunberg-Manago M, Rabinowitz J.C, Leighton T. Similar organization of the nusA-infB operon in Bacillus subtilis and Escherichia coli. Journal of bacteriology 175:2880-7 (1993). [Pubmed]

Resnekov O, Melin L, Carlsson P, Mannerlöv M, von Gabain A, Hederstedt L. Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. Molecular & general genetics : MGG 234:285-96 (1992). [Pubmed]

Morohoshi F, Hayashi K, Munakata N. Bacillus subtilis gene coding for constitutive O6-methylguanine-DNA alkyltransferase. Nucleic acids research 17:6531-43 (1989). [Pubmed]

Kempf B, Bremer E. OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. The Journal of biological chemistry 270:16701-13 (1995). [Pubmed]

Kappes R.M, Kempf B, Kneip S, Boch J, Gade J, Meier-Wagner J, Bremer E. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Molecular microbiology 32:203-16 (1999). [Pubmed]

von Blohn C, Kempf B, Kappes R.M, Bremer E. Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Molecular microbiology 25:175-87 (1997). [Pubmed]

Spiegelhalter F, Bremer E. Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress-responsive promoters. Molecular microbiology 29:285-96 (1998). [Pubmed]

de Saizieu A, Vankan P, Vockler C, van Loon A.P. The trp RNA-binding attenuation protein (TRAP) regulates the steady-state levels of transcripts of the Bacillus subtilis folate operon. Microbiology (Reading, England) 143 ( Pt 3):979-89 (1997). [Pubmed]

Popham D.L, Setlow P. Cloning, nucleotide sequence, mutagenesis, and mapping of the Bacillus subtilis pbpD gene, which codes for penicillin-binding protein 4. Journal of bacteriology 176:7197-205 (1994). [Pubmed]

Popham D.L, Setlow P. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpF gene, which codes for a putative class A high-molecular-weight penicillin-binding protein. Journal of bacteriology 175:4870-6 (1993). [Pubmed]

Gao H, Jiang X, Pogliano K, Aronson A.I. The E1beta and E2 subunits of the Bacillus subtilis pyruvate dehydrogenase complex are involved in regulation of sporulation. Journal of bacteriology 184:2780-8 (2002). [Pubmed]

Hemilä H, Palva A, Paulin L, Arvidson S, Palva I. Secretory S complex of Bacillus subtilis: sequence analysis and identity to pyruvate dehydrogenase. Journal of bacteriology 172:5052-63 (1990). [Pubmed]

Brakhage A.A, Wozny M, Putzer H. Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA synthetase genes. Biochimie 72:725-34 (1990). [Pubmed]

Hulett F.M, Lee J, Shi L, Sun G, Chesnut R, Sharkova E, Duggan M.F, Kapp N. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. Journal of bacteriology 176:1348-58 (1994). [Pubmed]

Abdel-Fattah W.R, Chen Y, Eldakak A, Hulett F.M. Bacillus subtilis phosphorylated PhoP: direct activation of the E(sigma)A- and repression of the E(sigma)E-responsive phoB-PS+V promoters during pho response. Journal of bacteriology 187:5166-78 (2005). [Pubmed]

Chesnut R.S, Bookstein C, Hulett F.M. Separate promoters direct expression of phoAIII, a member of the Bacillus subtilis alkaline phosphatase multigene family, during phosphate starvation and sporulation. Molecular microbiology 5:2181-90 (1991). [Pubmed]

Eder S, Liu W, Hulett F.M. Mutational analysis of the phoD promoter in Bacillus subtilis: implications for PhoP binding and promoter activation of Pho regulon promoters. Journal of bacteriology 181:2017-25 (1999). [Pubmed]

Puri-Taneja A, Paul S, Chen Y, Hulett F.M. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6). Journal of bacteriology 188:1266-78 (2006). [Pubmed]

Paul S, Birkey S, Liu W, Hulett F.M. Autoinduction of Bacillus subtilis phoPR operon transcription results from enhanced transcription from EsigmaA- and EsigmaE-responsive promoters by phosphorylated PhoP. Journal of bacteriology 186:4262-75 (2004). [Pubmed]

Prágai Z, Allenby N.E, O'Connor N, Dubrac S, Rapoport G, Msadek T, Harwood C.R. Transcriptional regulation of the phoPR operon in Bacillus subtilis. Journal of bacteriology 186:1182-90 (2004). [Pubmed]

Lazazzera B.A, Kurtser I.G, McQuade R.S, Grossman A.D. An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. Journal of bacteriology 181:5193-200 (1999). [Pubmed]

McQuade R.S, Comella N, Grossman A.D. Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sigma-H of Bacillus subtilis. Journal of bacteriology 183:4905-9 (2001). [Pubmed]

Herrler M, Bang H, Marahiel M.A. Cloning and characterization of ppiB, a Bacillus subtilis gene which encodes a cyclosporin A-sensitive peptidyl-prolyl cis-trans isomerase. Molecular microbiology 11:1073-83 (1994). [Pubmed]

Cao M, Kobel P.A, Morshedi M.M, Wu M.F, Paddon C, Helmann J.D. Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. Journal of molecular biology 316:443-57 (2002). [Pubmed]

Qi Y, Kobayashi Y, Hulett F.M. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon. Journal of bacteriology 179:2534-9 (1997). [Pubmed]

Shin B.S, Choi S.K, Park S.H. Regulation of the Bacillus subtilis phosphotransacetylase gene. Journal of biochemistry 126:333-9 (1999). [Pubmed]

Stülke J, Martin-Verstraete I, Zagorec M, Rose M, Klier A, Rapoport G. Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Molecular microbiology 25:65-78 (1997). [Pubmed]

Ebbole D.J, Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. The Journal of biological chemistry 262:8274-87 (1987). [Pubmed]

Saxild H.H, Jacobsen J.H, Nygaard P. Functional analysis of the Bacillus subtilis purT gene encoding formate-dependent glycinamide ribonucleotide transformylase. Microbiology (Reading, England) 141 ( Pt 9):2211-8 (1995). [Pubmed]

Quinn C.L, Stephenson B.T, Switzer R.L. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. The Journal of biological chemistry 266:9113-27 (1991). [Pubmed]

Meng Q, Turnbough C.L, Switzer R.L. Attenuation control of pyrG expression in Bacillus subtilis is mediated by CTP-sensitive reiterative transcription. Proceedings of the National Academy of Sciences of the United States of America 101:10943-8 (2004). [Pubmed]

Yu J, Hederstedt L, Piggot P.J. The cytochrome bc complex (menaquinone:cytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization. Journal of bacteriology 177:6751-60 (1995). [Pubmed]

Jarmer H, Larsen T.S, Krogh A, Saxild H.H, Brunak S, Knudsen S. Sigma A recognition sites in the Bacillus subtilis genome. Microbiology (Reading, England) 147:2417-24 (2001). [Pubmed]

Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M. Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Molecular microbiology 59:1714-29 (2006). [Pubmed]

Cheo D.L, Bayles K.W, Yasbin R.E. Elucidation of regulatory elements that control damage induction and competence induction of the Bacillus subtilis SOS system. Journal of bacteriology 175:5907-15 (1993). [Pubmed]

Gardan R, Rapoport G, Débarbouillé M. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. Journal of molecular biology 249:843-56 (1995). [Pubmed]

Boor K.J, Duncan M.L, Price C.W. Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. The Journal of biological chemistry 270:20329-36 (1995). [Pubmed]

López de Saro F.J, Yoshikawa N, Helmann J.D. Expression, abundance, and RNA polymerase binding properties of the delta factor of Bacillus subtilis. The Journal of biological chemistry 274:15953-8 (1999). [Pubmed]

Grundy F.J, Henkin T.M. Cloning and analysis of the Bacillus subtilis rpsD gene, encoding ribosomal protein S4. Journal of bacteriology 172:6372-9 (1990). [Pubmed]

Ogasawara N, Moriya S, Yoshikawa H. Structure and organization of rRNA operons in the region of the replication origin of the Bacillus subtilis chromosome. Nucleic acids research 11:6301-18 (1983). [Pubmed]

Stewart G.C, Bott K.F. DNA sequence of the tandem ribosomal RNA promoter for B. subtilis operon rrnB. Nucleic acids research 11:6289-300 (1983). [Pubmed]

Estrem S.T, Ross W, Gaal T, Chen Z.W, Niu W, Ebright R.H, Gourse R.L. Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. Genes & development 13:2134-47 (1999). [Pubmed]

Jarvis E.D, Cheng S, Rudner R. Genetic structure and DNA sequences at junctions involved in the rearrangements of Bacillus subtilis strains carrying the trpE26 mutation. Genetics 126:785-97 (1990). [Pubmed]

Wise A.A, Price C.W. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. Journal of bacteriology 177:123-33 (1995). [Pubmed]

Shimotsu H, Henner D.J. Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. Journal of bacteriology 168:380-8 (1986). [Pubmed]

Arnaud M, Débarbouillé M, Rapoport G, Saier M.H, Reizer J. In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis. The Journal of biological chemistry 271:18966-72 (1996). [Pubmed]

Crutz A.M, Steinmetz M. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system. Journal of bacteriology 174:6087-95 (1992). [Pubmed]

Zheng G, Yan L.Z, Vederas J.C, Zuber P. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. Journal of bacteriology 181:7346-55 (1999). [Pubmed]

Struck J.C, Hartmann R.K, Toschka H.Y, Erdmann V.A. Transcription and processing of Bacillus subtilis small cytoplasmic RNA. Molecular & general genetics : MGG 215:478-82 (1989). [Pubmed]

Burkholder W.F, Kurtser I, Grossman A.D. Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 104:269-79 (2001). [Pubmed]

Melin L, Rutberg L, von Gabain A. Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. Journal of bacteriology 171:2110-5 (1989). [Pubmed]

Herbort M, Klein M, Manting E.H, Driessen A.J, Freudl R. Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase. Journal of bacteriology 181:493-500 (1999). [Pubmed]

Allmansberger R. Temporal regulation of sigD from Bacillus subtilis depends on a minor promoter in front of the gene. Journal of bacteriology 179:6531-5 (1997). [Pubmed]

Weir J, Predich M, Dubnau E, Nair G, Smith I. Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. Journal of bacteriology 173:521-9 (1991). [Pubmed]

Horsburgh M.J, Moir A. Sigma M, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt. Molecular microbiology 32:41-50 (1999). [Pubmed]

Huang X, Decatur A, Sorokin A, Helmann J.D. The Bacillus subtilis sigma(X) protein is an extracytoplasmic function sigma factor contributing to survival at high temperature. Journal of bacteriology 179:2915-21 (1997). [Pubmed]

Shafikhani S.H, Mandic-Mulec I, Strauch M.A, Smith I, Leighton T. Postexponential regulation of sin operon expression in Bacillus subtilis. Journal of bacteriology 184:564-71 (2002). [Pubmed]

Gaur N.K, Cabane K, Smith I. Structure and expression of the Bacillus subtilis sin operon. Journal of bacteriology 170:1046-53 (1988). [Pubmed]

Bolhuis A, Sorokin A, Azevedo V, Ehrlich S.D, Braun P.G, de Jong A, Venema G, Bron S, van Dijl J.M. Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Molecular microbiology 22:605-18 (1996). [Pubmed]

Sekowska A, Coppée J.Y, Le Caer J.P, Martin-Verstraete I, Danchin A. S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts. Molecular microbiology 36:1135-47 (2000). [Pubmed]

Sekowska A, Bertin P, Danchin A. Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Molecular microbiology 29:851-8 (1998). [Pubmed]

Chibazakura T, Kawamura F, Takahashi H. Differential regulation of spo0A transcription in Bacillus subtilis: glucose represses promoter switching at the initiation of sporulation. Journal of bacteriology 173:2625-32 (1991). [Pubmed]

Eymann C, Mittenhuber G, Hecker M. The stringent response, sigmaH-dependent gene expression and sporulation in Bacillus subtilis. Molecular & general genetics : MGG 264:913-23 (2001). [Pubmed]

Trach K, Hoch J.A. The Bacillus subtilis spo0B stage 0 sporulation operon encodes an essential GTP-binding protein. Journal of bacteriology 171:1362-71 (1989). [Pubmed]

Perego M, Hoch J.A. Negative regulation of Bacillus subtilis sporulation by the spo0E gene product. Journal of bacteriology 173:2514-20 (1991). [Pubmed]

Trach K, Chapman J.W, Piggot P, LeCoq D, Hoch J.A. Complete sequence and transcriptional analysis of the spo0F region of the Bacillus subtilis chromosome. Journal of bacteriology 170:4194-208 (1988). [Pubmed]

Lewandoski M, Dubnau E, Smith I. Transcriptional regulation of the spo0F gene of Bacillus subtilis. Journal of bacteriology 168:870-7 (1986). [Pubmed]

York K, Kenney T.J, Satola S, Moran C.P, Poth H, Youngman P. Spo0A controls the sigma A-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. Journal of bacteriology 174:2648-58 (1992). [Pubmed]

Guzmán P, Westpheling J, Youngman P. Characterization of the promoter region of the Bacillus subtilis spoIIE operon. Journal of bacteriology 170:1598-609 (1988). [Pubmed]

Kenney T.J, York K, Youngman P, Moran C.P. Genetic evidence that RNA polymerase associated with sigma A factor uses a sporulation-specific promoter in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 86:9109-13 (1989). [Pubmed]

Mekjian K.R, Bryan E.M, Beall B.W, Moran C.P. Regulation of hexuronate utilization in Bacillus subtilis. Journal of bacteriology 181:426-33 (1999). [Pubmed]

Foulger D, Errington J. The role of the sporulation gene spoIIIE in the regulation of prespore-specific gene expression in Bacillus subtilis. Molecular microbiology 3:1247-55 (1989). [Pubmed]

Errington J, Appleby L, Daniel R.A, Goodfellow H, Partridge S.R, Yudkin M.D. Structure and function of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for sigma G activity at an intermediate stage of sporulation. Journal of general microbiology 138:2609-18 (1992). [Pubmed]

Nakano M.M, Xia L.A, Zuber P. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. Journal of bacteriology 173:5487-93 (1991). [Pubmed]

van der Ploeg J.R, Barone M, Leisinger T. Expression of the Bacillus subtilis sulphonate-sulphur utilization genes is regulated at the levels of transcription initiation and termination. Molecular microbiology 39:1356-65 (2001). [Pubmed]

Mauël C, Bauduret A, Chervet C, Beggah S, Karamata D. In Bacillus subtilis 168, teichoic acid of the cross-wall may be different from that of the cylinder: a hypothesis based on transcription analysis of tag genes. Microbiology (Reading, England) 141 ( Pt 10):2379-89 (1995). [Pubmed]

Sakaguchi R, Amano H, Shishido K. Nucleotide sequence homology of the tetracycline-resistance determinant naturally maintained in Bacillus subtilis Marburg 168 chromosome and the tetracycline-resistance gene of B. subtilis plasmid pNS1981. Biochimica et biophysica acta 950:441-4 (1988). [Pubmed]

Gendron N, Putzer H, Grunberg-Manago M. Expression of both Bacillus subtilis threonyl-tRNA synthetase genes is autogenously regulated. Journal of bacteriology 176:486-94 (1994). [Pubmed]

Putzer H, Gendron N, Grunberg-Manago M. Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. The EMBO journal 11:3117-27 (1992). [Pubmed]

Robichon D, Arnaud M, Gardan R, Pragai Z, O'Reilly M, Rapoport G, Débarbouillé M. Expression of a new operon from Bacillus subtilis, ykzB-ykoL, under the control of the TnrA and PhoP-phoR global regulators. Journal of bacteriology 182:1226-31 (2000). [Pubmed]

Schöck F, Dahl M.K. Expression of the tre operon of Bacillus subtilis 168 is regulated by the repressor TreR. Journal of bacteriology 178:4576-81 (1996). [Pubmed]

Vold B.S, Green C.J, Narasimhan N, Strem M, Hansen J.N. Transcriptional analysis of Bacillus subtilis rRNA-tRNA operons. II. Unique properties of an operon containing a minor 5 S rRNA gene. The Journal of biological chemistry 263:14485-90 (1988). [Pubmed]

Shimotsu H, Henner D.J. Characterization of the Bacillus subtilis tryptophan promoter region. Proceedings of the National Academy of Sciences of the United States of America 81:6315-9 (1984). [Pubmed]

Shimotsu H, Kuroda M.I, Yanofsky C, Henner D.J. Novel form of transcription attenuation regulates expression the Bacillus subtilis tryptophan operon. Journal of bacteriology 166:461-71 (1986). [Pubmed]

Scharf C, Riethdorf S, Ernst H, Engelmann S, Völker U, Hecker M. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. Journal of bacteriology 180:1869-77 (1998). [Pubmed]

Soldo B, Lazarevic V, Pagni M, Karamata D. Teichuronic acid operon of Bacillus subtilis 168. Molecular microbiology 31:795-805 (1999). [Pubmed]

Henkin T.M, Glass B.L, Grundy F.J. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. Journal of bacteriology 174:1299-306 (1992). [Pubmed]

Wray L.V, Ferson A.E, Fisher S.H. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. Journal of bacteriology 179:5494-501 (1997). [Pubmed]

Luo D, Leautey J, Grunberg-Manago M, Putzer H. Structure and regulation of expression of the Bacillus subtilis valyl-tRNA synthetase gene. Journal of bacteriology 179:2472-8 (1997). [Pubmed]

Le Grice S.F, Sonenshein A.L. Interaction of Bacillus subtilis RNA polymerase with a chromosomal promoter. Journal of molecular biology 162:551-64 (1982). [Pubmed]

Fukushima T, Ishikawa S, Yamamoto H, Ogasawara N, Sekiguchi J. Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis. Journal of biochemistry 133:475-83 (2003). [Pubmed]

Dartois V, Débarbouillé M, Kunst F, Rapoport G. Characterization of a novel member of the DegS-DegU regulon affected by salt stress in Bacillus subtilis. Journal of bacteriology 180:1855-61 (1998). [Pubmed]

Christiansen L.C, Schou S, Nygaard P, Saxild H.H. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. Journal of bacteriology 179:2540-50 (1997). [Pubmed]

Gärtner D, Geissendörfer M, Hillen W. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. Journal of bacteriology 170:3102-9 (1988). [Pubmed]

Allmansberger R. Degradation of the Bacillus subtilis xynA transcript is accelerated in response to stress. Molecular & general genetics : MGG 251:108-12 (1996). [Pubmed]

Galinier A, Deutscher J, Martin-Verstraete I. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. Journal of molecular biology 286:307-14 (1999). [Pubmed]

Struck J.C, Far R.K, Schröder W, Hucho F, Toschka H.Y, Erdmann V.A. Characterization of a 17 kDa protein gene upstream from the small cytoplasmic RNA gene of Bacillus subtilis. Biochimica et biophysica acta 1050:80-3 (1990). [Pubmed]

Chen G, Kumar A, Wyman T.H, Moran C.P. Spo0A-dependent activation of an extended -10 region promoter in Bacillus subtilis. Journal of bacteriology 188:1411-8 (2006). [Pubmed]

Satomura T, Shimura D, Asai K, Sadaie Y, Hirooka K, Fujita Y. Enhancement of glutamine utilization in Bacillus subtilis through the GlnK-GlnL two-component regulatory system. Journal of bacteriology 187:4813-21 (2005). [Pubmed]

Sarsero J.P, Merino E, Yanofsky C. A Bacillus subtilis operon containing genes of unknown function senses tRNATrp charging and regulates expression of the genes of tryptophan biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 97:2656-61 (2000). [Pubmed]

Fisher S.H, Wray L.V. Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase. Journal of bacteriology 184:2148-54 (2002). [Pubmed]

Gaballa A, Wang T, Ye R.W, Helmann J.D. Functional analysis of the Bacillus subtilis Zur regulon. Journal of bacteriology 184:6508-14 (2002). [Pubmed]

Price C.W, Fawcett P, Cérémonie H, Su N, Murphy C.K, Youngman P. Genome-wide analysis of the general stress response in Bacillus subtilis. Molecular microbiology 41:757-74 (2001). [Pubmed]

Serizawa M, Sekiguchi J. The Bacillus subtilis YdfHI two-component system regulates the transcription of ydfJ, a member of the RND superfamily. Microbiology (Reading, England) 151:1769-78 (2005). [Pubmed]

Yoshida K, Yamamoto Y, Omae K, Yamamoto M, Fujita Y. Identification of two myo-inositol transporter genes of Bacillus subtilis. Journal of bacteriology 184:983-91 (2002). [Pubmed]

You C, Lu H, Sekowska A, Fang G, Wang Y, Gilles A.M, Danchin A. The two authentic methionine aminopeptidase genes are differentially expressed in Bacillus subtilis. BMC microbiology 5:57 (2005). [Pubmed]

Gaballa A, Cao M, Helmann J.D. Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Microbiology (Reading, England) 149:3413-21 (2003). [Pubmed]

Sarsero J.P, Merino E, Yanofsky C. A Bacillus subtilis gene of previously unknown function, yhaG, is translationally regulated by tryptophan-activated TRAP and appears to be involved in tryptophan transport. Journal of bacteriology 182:2329-31 (2000). [Pubmed]

Matsuoka H, Hirooka K, Fujita Y. Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation. The Journal of biological chemistry 282:5180-94 (2007). [Pubmed]

Inaoka T, Takahashi K, Yada H, Yoshida M, Ochi K. RNA polymerase mutation activates the production of a dormant antibiotic 3,3'-neotrehalosadiamine via an autoinduction mechanism in Bacillus subtilis. The Journal of biological chemistry 279:3885-92 (2004). [Pubmed]

Leelakriangsak M, Zuber P. Transcription from the P3 promoter of the Bacillus subtilis spx gene is induced in response to disulfide stress. Journal of bacteriology 189:1727-35 (2007). [Pubmed]

Auger S, Yuen W.H, Danchin A, Martin-Verstraete I. The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. Microbiology (Reading, England) 148:507-18 (2002). [Pubmed]

Völker U, Andersen K.K, Antelmann H, Devine K.M, Hecker M. One of two osmC homologs in Bacillus subtilis is part of the sigmaB-dependent general stress regulon. Journal of bacteriology 180:4212-8 (1998). [Pubmed]

Sekowska A, Danchin A. The methionine salvage pathway in Bacillus subtilis. BMC microbiology 2:8 (2002). [Pubmed]

Gaballa A, Helmann J.D. A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Molecular microbiology 45:997-1005 (2002). [Pubmed]

Matsumoto T, Nakanishi K, Asai K, Sadaie Y. Transcriptional analysis of the ylaABCD operon of Bacillus subtilis encoding a sigma factor of extracytoplasmic function family. Genes & genetic systems 80:385-93 (2005). [Pubmed]

Honda K, Nakamura K, Nishiguchi M, Yamane K. Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. Journal of bacteriology 175:4885-94 (1993). [Pubmed]

Härtig E, Hartmann A, Schätzle M, Albertini A.M, Jahn D. The Bacillus subtilis nrdEF genes, encoding a class Ib ribonucleotide reductase, are essential for aerobic and anaerobic growth. Applied and environmental microbiology 72:5260-5 (2006). [Pubmed]

Mironov V.N, Kraev A.S, Chikindas M.L, Chernov B.K, Stepanov A.I, Skryabin K.G. Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw. Molecular & general genetics : MGG 242:201-8 (1994). [Pubmed]

Silvaggi J.M, Perkins J.B, Losick R. Small untranslated RNA antitoxin in Bacillus subtilis. Journal of bacteriology 187:6641-50 (2005). [Pubmed]

Wang L.F, Doi R.H. Promoter switching during development and the termination site of the sigma 43 operon of Bacillus subtilis. Molecular & general genetics : MGG 207:114-9 (1987). [Pubmed]

Chu F, Kearns D.B, Branda S.S, Kolter R, Losick R. Targets of the master regulator of biofilm formation in Bacillus subtilis. Molecular microbiology 59:1216-28 (2006). [Pubmed]

Ramírez M.I, Castellanos-Juárez F.X, Yasbin R.E, Pedraza-Reyes M. The ytkD (mutTA) gene of Bacillus subtilis encodes a functional antimutator 8-Oxo-(dGTP/GTP)ase and is under dual control of sigma A and sigma F RNA polymerases. Journal of bacteriology 186:1050-9 (2004). [Pubmed]

Burguière P, Fert J, Guillouard I, Auger S, Danchin A, Martin-Verstraete I. Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism. Journal of bacteriology 187:6019-30 (2005). [Pubmed]

Erwin K.N, Nakano S, Zuber P. Sulfate-dependent repression of genes that function in organosulfur metabolism in Bacillus subtilis requires Spx. Journal of bacteriology 187:4042-9 (2005). [Pubmed]

Solov'eva I.M, Kreneva R.A, ErraÄ­s L.L, Mironov A.S, Perumov D.A. [Study of the mechanism for regulating ribR gene activity in Bacillus subtilis]. Genetika 40:716-20 (2004). [Pubmed]

Yoshida K.I, Fujita Y, Ehrlich S.D. An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis. Journal of bacteriology 182:5454-61 (2000). [Pubmed]

Ellermeier C.D, Hobbs E.C, Gonzalez-Pastor J.E, Losick R. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124:549-59 (2006). [Pubmed]

Kearns D.B, Chu F, Branda S.S, Kolter R, Losick R. A master regulator for biofilm formation by Bacillus subtilis. Molecular microbiology 55:739-49 (2005). [Pubmed]

Guillouard I, Auger S, Hullo M.F, Chetouani F, Danchin A, Martin-Verstraete I. Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase. Journal of bacteriology 184:4681-9 (2002). [Pubmed]

Mascher T, Zimmer S.L, Smith T.A, Helmann J.D. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrobial agents and chemotherapy 48:2888-96 (2004). [Pubmed]

Zhang Y, Taylor S.V, Chiu H.J, Begley T.P. Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis. Journal of bacteriology 179:3030-5 (1997). [Pubmed]

Doan T, Servant P, Tojo S, Yamaguchi H, Lerondel G, Yoshida K, Fujita Y, Aymerich S. The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. Microbiology (Reading, England) 149:2331-43 (2003). [Pubmed]

Butcher B.G, Lin Y.P, Helmann J.D. The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the LiaRS two-component system. Journal of bacteriology 189:8616-25 (2007). [Pubmed]

Disclaimer and license

These data are available AS IS and at your own risk. The EEAD/CSIC do not give any representation or warranty nor assume any liability or responsibility for the data nor the results posted (whether as to their accuracy, completeness, quality or otherwise). Access to these data is available free of charge for ordinary use in the course of research. Downloaded data have CC-BY-NC-SA license. FootprintDB is also available at RSAT::Plants, part of the INB/ELIXIR-ES resources portfolio.